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Abstract

Traditional methods of providing protection in memory systems
do so at the cost of increased context switch time and/or increased
storage to record access permissions for processes. With the advent
of computers that support cycle-by-cycle multithreading, protection
schemes that increase the time to perform a context switch are
unacceptable, but protecting unrelated processes from each other
is still necessary if such machines are to be used in non-trusting
environments.

This paper examines guarded pointers, a hardware technique
which uses tagged 64-bit pointer objects to implement capability-
based addressing. Guarded pointers encode a segment descriptor
into the upper bits of every pointer, eliminating the indirection
and related performance penalties associated with traditional im-
plementations of capabilities. All processes share a single 54-bit
virtual address space, and access is limited to the data that can
be referenced through the pointers that a process has been issued.
Only one level of address translation is required to perform a mem-
ory reference. Sharing data between processes is efficient, and
protection states are defined to allow fast protected subsystem calls
and create unforgeable data keys.

1 Introduction

Memory system designers must provide security without sacrificing
efficiency and flexibility. Objects must be protected from modifi-
cation by unauthorized processes, and user programs must not be
allowed to affect the execution of trusted system programs. It must
be possible to share data between processes in a safe and efficient
manner; merely providing private data spaces or globally accessible
data spaces is insufficient. An efficient mechanism must also be
provided to change protection domains (the set of objects that can
be referenced) when entering a subsystem.

The current trend towards the use of multithreading as a method
of increasing the utilization of execution units makes traditional
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Figure 1: Format of a guarded pointer. A guarded pointer iden-
tifies a byte in the virtual address space, the segment containing
that byte, and the set of operations permitted on the segment. The
permission field determines what operations may be performed us-
ing the pointer, and the segment length field separates the address
into a fixed segment field and a variable offset field by specifying
the base-2 logarithm of the length of the segment containing the
address.

security schemes undesirable, particularly if context switches may
occur on a cycle-by-cycle basis. Traditional security systems have
anon-zero context switch time as loading the protection domain for
the new context may require installing new address translations or
protection table entries.

A number of multithreaded systems such as Alewife [2], and
Tera [3] have avoided this problem by requiring that all threads
which are simultaneously loaded share the same address space and
protection domain. This is sufficient for simultaneous execution
of threads from a single user program, but precludes interleaving
threads from different protection domains, eliminating a potential
source of concurrency.

This paper presents guarded pointers, a mechanism that pro-
vides efficient protection and sharing of data. Guarded pointers
are an implementation of capabilities [12] that encode permission
and segmentation information within tagged pointer objects. A
guarded pointer may reside in a general purpose register or in mem-
ory, eliminating the need for special storage for capabilities. Be-
cause memory may be accessed directly using a guarded pointer,
higher performance may be achieved than with traditional imple-
mentations of capabilities, as table lookups to translate capabilities
to virtual addresses are not required.

Figure 1 shows the format of a guarded pointer. A single pointer
bit is added to each 64-bit data word. Fifty-four bits contain an
address, while the remaining ten bits specify the set of operations
that may be performed using the pointer (4 bits) and the length of



the segment containing the pointer (6 bits). Segments are required
to be a power of two bytes long, and to be aligned on their length.
Thus, a guarded pointer specifies an address, the operations that
can be performed using that address, and the segment containing
the address. No segment or capability tables are required. Since
protection information is encoded in pointers, it is possible for all
processes to share the same virtual address space safely, eliminating
the need to change the translation scheme on context switches and
facilitating the use of virtually-addressed caches.

Memory must be accessed using a guarded pointer with a valid
permission field. User level programs may not forge a guarded
pointer by setting the pointer bit on a word, although they may
manipulate pointers with instructions that maintain the protection
scheme. This prevents users from creating arbitrary pointers, while
allowing address arithmetic within the segments that have been
allocated to a user program. Privileged programs may set the pointer
bit of a word and thus create any pointer.

Section 2 of this paper examines guarded pointers in more de-
tail, and shows how they may be used to implement a memory sys-
tem. The M-Machine, a multicomputer architecture that shows how
guarded pointers satisfy the requirements of an aggressively multi-
threaded system, is described in Section 3. Section 4 discusses the
costs and benefits of guarded pointers. Section 5 compares guarded
pointers to other related protection schemes. Our conclusions are
presented in Section 6.

2 Guarded Pointers

Memory systems that use guarded pointers provide a single virtual
address space, which is shared by all processes [5]. A guarded
pointer identifies a byte in the virtual address space, the segment
containing that byte, and the set of operations permitted on the
segment. As shown in Figure 1, a guarded pointer is tagged with
a pointer bit to prevent user processes from forging it. A four-bit
permission field identifies the set of operations permitted on the
segment. The length field of the pointer holds the base-2 logarithm
of the segment length, which allows segments to range from a single
byte to the entire 23 byte address space in power of two increments.
The length field separates the address into a fixed segment portion
and a variable offset portion. Because of the logarithmic encoding,
segments are required to be aligned on their length. This allows the
base of a segment to be determined by setting all of the offset bits
to zero.

2.1 Permission Types

The permission field of a pointer indicates how a process may ac-
cess the data within the segment. Pointer permissions may specify
data access, code access, protected entry points, and unforgeable
identifiers (keys). The following is a representative set of permis-
sions:

e A Read-Only pointer may only be used to load data from
memory.

e A Read/Write pointer may be used to either load or store
data to memory.

e Execute pointers are read-only pointers that may be used
as targets for jump instructions. An execute pointer to a
code segment enables a program to jump to any location
within the segment and to read the segment. Execute point-
ers may be either execute-user or execute-privileged, which
encodes the supervisor mode bit explicitly within the instruc-
tion pointer. Privileged instructions may only by executed
with an execute-privileged instruction pointer.

A read-only, read/write, or execute pointer’s address field may
be altered as long as it remains within its segment bounds.

e Enter pointers are an efficient mechanism for implementing
gateways, as they enable a program to enter a code segment
only at particular locations. Jumping to an enter pointer
converts it to an execute pointer which is then loaded into
the instruction pointer. Enter pointers may not be modified
or used to load or store to memory. The two types of en-
ter pointers are enter-user and enter-privileged, which are
converted to the corresponding type of execute pointer by a
jump.

¢ A Key pointer may not be modified or referenced in any way.
It may be used as an unforgeable, unalterable identifier.

2.2 Pointer Operations

Implementing guarded pointers requires adding a small number
of pointer manipulation instructions to the architecture of a con-
ventional machine as well as some hardware to verify that each
instruction operates only on legal pointer types and that address
calculations remain within pointer bounds.

Load/Store: Every load or store operation requires a guarded
pointer of an appropriate type as its address argument. Protec-
tion violations are detected by checking the permission field of the
pointer. If the address is modified by an indexed or displacement
addressing mode, bounds violations are checked by examining the
length field as described below. The protection provided by guarded
pointers does not slow load or store operations. All checksare made
before the operation is issued, without reference to any permission
tables. Once these initial checks are performed, the access is guar-
anteed not to cause a protection violation, although events in the
memory system, such as TLB misses, may still occur.

Pointer Arithmetic: An LEA (load effective address) instruction
may be used to calculate new pointers from existing pointers. This
instruction adds an integer offset to a data or execute pointer to
produce a new pointer. An exception is raised if the new pointer
would lie outside the segment defined by the original pointer. For
efficiency, an LEAB operation, which adds an offset to the base of
the segment contained in a pointer, may be implemented as well.
If a guarded pointer is used as an input to a non-pointer operation,
the pointer bit of the guarded pointer is cleared, which converts
the pointer into an integer with the same bit fields as the original
pointer.

Figure 2 details the validation required on a pointer calculation.
The permission field of the pointer is checked to verify that it is a
read-only, read/write, or execute pointer. An integer offset is added
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Figure 2: Pointer Derivation: a new pointer may be created using an LEA operation on an existing pointer and an offset. The permission
field must be checked and the new pointer must not lie outside of the old pointer’s segment.

to the address field of the pointer. An exceptionis raised if the result
of this add over- or underflows into the fixed segment portion of the
address, which would create a pointer outside the original segment.
This error may be detected by comparing the fixed portion of the
address before and after the addition occurs.

Guarded pointers expose to the compiler address calculations
that are performed implicitly by hardware in conventional imple-
mentations of segmentation or capabilities. With the conventional
approach, the segmentation hardware performs many redundant
adds to relocate a series of related addresses. Consider, for exam-
ple, the following loop:

for (i=0;i<N;i++) s = s + al[i]l;

In a conventional system, each reference to array a would re-
quire the segmentation hardware to automatically add the segment
offset for each a[1] to the segment base. With guarded pointers,
the add can be performed once in software, and then the resulting
pointer can be incrementally stepped through the array, avoiding
the additional level of indirection.

Languages that permit arbitrary pointer arithmetic or type casts
between pointers and integers, such as C, are handled by defining
code sequences to convert between pointer and integer types. The
pointer-to-integer cast operation takes a guarded pointer as its input
and returns an integer containing the offset field of the guarded
pointer. This can be performed by subtracting the segment base,
determined using the LEAB instruction, from the pointer:

LEAB Ptr, 0, Base
SUB Ptr, Base, Int

The integer-to-pointer cast operation uses the LEAB instruction
to take an integer and create a pointer into the data segment of
the process with the integer as its offset, as long as the integer fits
into the offset field of the data segment. Note that neither of these
cast operations requires any privileged operations, which allows
them to be inlined into user code and exposed to the compiler for
optimization.

Pointer Creation: A process executing in privileged mode has
the ability to create pointers and hence access the entire address
space. Privileged mode is entered by jumping to an enter-privileged
pointer. It is exited by jumping to a user pointer (enter or execute).
While in privileged mode, a process may execute the SETPTR in-
struction to convert an integer into a pointer by setting the guarded
pointer bit. Thus, a privileged process may amplify pointer permis-
sions and increase segment lengths while a user process can only
restrict access. No other operations need be privileged, as guarded
pointers can be used to control access to protected objects such as
system tables and I/O devices.

Restricting Access: A process may derive pointers with re-
stricted permissions from those pointers that it holds. This allows
a process to share part of its address space with another process or
to grant another process read-only access to a segment to which it
holds read/write permission.

A RESTRICT instruction takes a pointer, P, and an integer
permission type, T, and creates a new pointer by substituting T for
the protection field of P. The substitution is performed only if T
represents a strict subset of the permissions of P. Otherwise, an
exception is raised.

Similarly the SUBSEG instruction takes an integer length, L,
and a pointer, P, and substitutes L into P if L is less than the original
length field of P. The RESTRICT and SUBSEG instructions allow
a user process to control access to its memory space efficiently,
without system software interaction.

The RESTRICT and SUBSEG instructions are not completely
necessary, as they can be emulated by providing user processes
with enter-privileged pointers to routines that use the SETPTR in-
struction to create new pointers that have restricted access rights or
segment boundaries. The M-Machine, which will be described in
the next section, takes this approach.
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Figure 3: A program enters a protected subsystem by jumping to an
enter pointer. After entry the subsystem code loads pointers to its
data structures from the code segment. A represents the register state
of the machine before the protected subsystem call, B the register
state just after the call, C the register state during the execution of
the protected subsystem, and D the register state immediately after
the return to the caller.

Pointer ldentification: The ISPOINTER instruction is pro-
vided to determine whether a given word is a guarded pointer. This
instruction checks the pointer bit and returns its state as an integer.
Quick pointer determination is useful for programming systems that
provide automatic storage reclamation, such as LISP, which need
to find pointers in order to garbage collect physical space [21].

2.3 Protected Subsystems

Enter pointers facilitate the implementation of protected subsystems
without kernel intervention. A protected subsystem can be entered
only at specific places and may execute in a different protection
domain than its caller. Entry into a protected subsystem, such
as a file system manager, is illustrated in Figure 3. Before the
call (Figure 3A), the calling program (segment 1) holds an enter
pointer to the subsystem’s code segment (segment 2) which contains
the subsystem code as well as pointers to the subsystem’s data
segments, such as the file system tables. To enter the subsystem, the
caller jumps to ENTER2, causing the hardware to transfer control
to the entry point and and convert the enter pointer to the execute
pointer IP2 (Figure 3B). The return instruction pointer (RETIP)
is passed as an argument to the subsystem. The subsystem then
uses the execute pointer to load GP1 and GP2, the pointers to its
data structures (Figure 3C). The subsystem returns to the calling
program by overwriting any registers containing private pointers
and jumping to RETIP (Figure 3D).

The sequence described above provides one-way protection,
protecting the subsystem’s data structures from the caller. To pro-
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Figure 4: Two-way protection is provided by creating a return seg-
ment that encapsulates the protection domain of the calling program.
A represents the register state of the machine before the protected
subsystem call, B the register state just after the call, C the register
state during the execution of the protected subsystem, and D the
register state immediately after the jump to the return segment.

vide two-way protection, the caller (segment 1) encapsulates its
protection domain in a return segment (segment 3) as shown in
Figure 4. Before the call (Figure 4A), the caller holds both enter
and read/write pointers to a return segment. The caller writes all the
live pointers in its registers into the return segment to protect them
from the subsystem (segment 2). It then overwrites all of the point-
ers in its register file except the enter pointer to the return segment
(ENTER3), the subsystem enter pointer (ENTER2), and any argu-
ments for the call (Figure 4B). The subsystem call then proceeds
as described above. After entry, the subsystem holds only an enter
pointer to the return segment and thus cannot directly access any of
the data segmentsin the caller’s protection domain (Figure 4C). The
subsystem returns by jumping to the return segment (Figure 4D),
which reloads the caller’s saved pointers and returns to the calling
program.

Enter pointers allow efficient realization of protected system
services and modular user programs that enforce access methods
to data structures. Modules of an operating system, e.g., the file-
system, can be implemented as unprivileged protected subsystems
that contain pointers to appropriate data structures. Since these data
structures cannot be accessed from outside the protected subsystem,
the file-system’s data structures are protected from unauthorized
use. Even an I/O driver can be implemented as an unprivileged
protected subsystem by protecting access to the read/write pointer
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Figure 5: Block diagram of a MAP chip. The cache is interleaved
into 4 banks accessed across a switch. Each cluster contains an
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of a memory-mapped I/O device. With protected entry to user-
level subsystems, very few services actually need to be privileged.
This can bring higher efficiency to modern microkernel operating
systems such as Mach [1].

3 The M-Machine

The M-Machine memory system provides an example of how
guarded pointers may be used. The M-Machine is a multicom-
puter with a 3-dimensional mesh interconnect and multithreaded
processing nodes [9, 16]. One of the major research goals of the
M-Machine is to explore the best use of the increasing number of
transistors that can be placed on a single chip.

The processing nodes of the M-Machine (known as multi-alu
processors, or MAPs) operate on 64-bit integer and floating-point
data types and use 64-bit guarded pointers (plus a tag bit) to access
a 54-bit, byte-addressable, global address space, which is shared
by all processes and nodes of the machine. Figure 5 shows a
block diagram of a MAP chip. Each MAP chip contains twelve
execution units: four integer, four floating-point, and four memory
units. These execution units are grouped into four clusters, each
containing one execution unit of each type.

To increase the utilization of these hardware resources when
executing programs that have insufficient instruction-level par-
allelism, the M-Machine implements multithreading. Four user
threads share the processing resources of each cluster, for a total
of sixteen user threads in execution at any time. Each cycle, the
hardware on each cluster examines the executing threads and se-
lects one thread to execute on the hardware resources. The three
execution units in a cluster are allocated and statically scheduled as
a long instruction word processor.

Each M-Machine node contains 16KWords (128KBytes) of on-
chip cache, which is divided into 4 banks, and IMWord (§MBytes)

of oft-chip memory. The cache is virtually addressed and addresses
are interleaved across the banks. This allows the memory system
to accept up to four memory requests during each cycle, matching
the peak rate at which the processor clusters can generate requests.
Requests that miss in the cache arbitrate for the external memory
interface, which can only handle one request at a time.

The M-Machine presents two challenges to a protection system.
The first is cycle-by-cycle interleaving of instructions and memory
references from different protection domains, while still allowing
efficient sharing among them. Because guarded pointers provide
memory protection without requiring each thread to have its own
virtual to physical translations, memory references from different
threads may be in flight simultaneously without compromising se-
curity. This enables zero cost context switching, as no work is
required to switch between protection domains.

The other challenge for both the protection and translation sys-
tems is the interleaved cache of the M-Machine, which may service
up to four references simultaneously. The single address space im-
plemented with guarded pointers allows the cache to be virtually
addressed and tagged so that translations need only to be performed
on cache misses. In addition, encoding all protection information
in a guarded pointer eliminates any need for table lookup prior to
or during cache access. These two features eliminate the need to
replicate or quad-port the TLB or other protection tables.

4 Critique

4.1 Hardware Costs

Guarded pointers have two hardware costs: a small increase in
the amount of memory required by a system, and some additional
hardware to perform permission checking. To prevent unauthorized
creation or alteration of a guarded pointer, a single tag bit is required
on all memory words, which results in a 1.5% increase in the amount
of memory required by the system.

The hardware required to perform permission checking on mem-
ory access and segment bounds checking on pointer manipulation
is minimal. One decoder for the permission field of the pointer,
one decoder for the opcode of the instruction being executed, and a
small amount of random logic are needed to determine if the opera-
tion is allowed. The pointer bit of an operand can be checked at the
same time, to determine if it is a legal pointer. To check for segment
bounds violations when altering a pointer, a masked comparator is
needed. It compares the address before and after alteration and
signals a fault if any of the segment bits of the address field change.

Memory systems based on guarded pointers do not require any
segmentation tables or protection lookaside buffers in hardware, nor
is it necessary to annotate cached virtual-physical translations with
a process or address space identifier. As with other single address
space systems, the cache may be virtually addressed, requiring
translation only on cache misses.

4.2 Address Space

Since 10 bits are required to encode the permission and segment
length fields of the guarded pointers described in this paper, the
virtual address space is reduced, from 64 to 54 bits. A 54-bit
address space allows 1.8x10' bytes to be addressed, which should



be sufficient for the immediate future. Several current processors
support 64-bit virtual addresses, but only use some of the available
address bits. For example, the DEC Alpha 21064 only translates
43 bits of each 64-bit address [11].

There is an opportunity cost associated with reducing the virtual
address space, however. Some system designers take advantage of
large virtual address spaces to provide a level of security through
sparse placement of objects. For example, the Amoeba distributed
operating system [22] protects objects using a software capability
scheme. These capabilities are kept secret by embedding them in a
huge virtual address space, a strategy which becomes less attractive
if the virtual address space shrinks by a factor of 1000. Of course,
this particular use of a sparse virtual address space can be replaced
by the capability mechanism provided by guarded pointers.

Virtual address space fragmentation is another potential prob-
lem with guarded pointers, as segments must be powers of two
words in length and aligned. Internal fragmentation may result
when the space needed by an object must be rounded up to the next
power of two words. However, this fragmentation does not result
in much wasted physical memory, since physical space is allocated
on a page-by-page basis, independent of segmentation. External
fragmentation of the virtual address space may occur when recy-
cled segments cannot be coerced into contiguous sections of usable
sizes. A buddy system memory allocation scheme, which combines
adjacent free segments into larger segments, can be used to reduce
this fragmentation problem.

4.3 Limitations of guarded pointers

While guarded pointers enable efficient implementation of many
desirable operating system features, some shortcomings inherent
in single-address-space and capability-based architectures are not
addressed. This section examines some of these problems, and sug-
gests ways in which the software system designer can use guarded
pointers to solve them.

Protected Indirection: The efficiency of guarded pointers is
largely due to eliminating indirection through protected segment
tables. With guarded pointers there is no need to store these tables
or to access them on each memory reference. Without protected
indirection, however, modifying a capability requires scanning the
entire virtual address space to update all copies of it. This is needed,
for example, when relocating a segment within the virtual address
space or revoking access rights to a segment. In some cases this
expensive operation can be avoided by exploiting the paging trans-
lation, user-level indirection, or protected subsystems, as described
below.

All guarded pointers to a segment can be simultaneously in-
validated by unmapping the segment’s address space in the page
table. All subsequent accesses using pointers to this segment will
raise exceptions. Segments can be relocated by updating the pointer
causing the exception on each reference to the relocated segment.
One limitation of this approach is that it operates on a page gran-
ularity while segments may be any size, down to a single byte in
length. Thus relocating or revoking access to a segment may affect
the performance of references to several unrelated segments that
happen to reside on the same physical page.

Indirection can be performed explicitly in software where it

is required. If a segment’s location is unknown or is expected
to move frequently, a program can make all segment references
to offsets from a single segment base pointer. Only this single
pointer needs to be updated when the segment is moved. With
explicit indirection, overhead is incurred only when indirection is
needed, and then it is exposed to the compiler for optimization.
Since no hardware prevents user code from copying the segment
base pointer, relocation or revocation through explicit indirection
requires adherence to software conventions.

It is impossible in any capability-based system to directly re-
voke a single process’ rights to access a segment without potentially
affecting other processes. Since possession of a capability confers
access rights, the only way to remove access rights from a single
process is to remove all capabilities containing those access rights
from the memory addressable by the process. This can be accom-
plished by sweeping the memory that the process can address, and
overwriting the correct capabilities, so long as none of the memory
containing those capabilities is shared. If the pointers that need to
be overwritten are contained within a shared segment, all processes
which rely on the pointer will lose access privileges.

Finally, protected indirection can be implemented by requiring
that all accesses to an object be made through a protected subsys-
tem. In addition to restricting the access methods for the object,
the subsystem can relocate the object at will and can implement ar-
bitrary protection mechanisms, such as per-process access control
lists. Revoking a single process’ access rights can be performed
by updating the access control list. Accessing an object through
a protected subsystem is advisable if the object must be relocated
or have its access rights changed frequently and if the object is
referenced infrequently or only via the subsystem access methods.

Address Garbage Collection: Without enforced indirection,
address space is allocated “for all time,” requiring the system soft-
ware to periodically garbage collect the virtual address space, so
that addresses no longer in service can be reused. This is simplified
with guarded pointers, as pointers are self identifying via the tag bit.
Thus, the live segments can be found by recursively scanning the
reachable segments from all live processes and persistent objects.

5 Related Work

5.1 Page-Based Protection

Separate Address Spaces: The main objection to using a tra-
ditional paged memory system on a multithreaded processor is the
time required to change protection domains. Page-based protection
systems provide security by assigning each process its own set of
virtual to physical address translations. On each change of pro-
tection domain, the old mapping becomes invalid and a new one
must become available. This is typically accomplished by writing
the address of the page table that describes the new mapping into
a hardware register. Without address space identifiers (or process
identifiers) the old translations must be flushed from the TLB and
the cache must be purged on each change of protection domain.

Using address space identifiers to identify the process associated
with a virtual address alleviates the stale translation problem and
allows implementation of a virtually-addressed cache. A virtually-
addressed cache is extremely useful for a machine that expects to



make multiple cached memory references in each cycle, as it allows
translation to be deferred until external memory must be referenced,
thus reducing the number of ports needed on the translation looka-
side buffers. However, as address space identifiers create synonyms
or aliases for shared data, no data can be shared in a virtually ad-
dressed cache using this system.

In addition to in-cache sharing problems, page-based protection
schemes have difficulties sharing data through main memory. Even
with address space identifiers, different processes will have different
translations and names for the same object. The page table for each
process must be altered so that it contains a translation for the shared
physical page. All processes that share a group of pages must have
a page table entry for each page in the group, resulting in n x m
page table entries for = physical pages shared among m processes.
Finally, basing protection on paging limits the smallest object that
can be protected to be the size of a page.

Domain-Page Protection: The Domain-Page system [17] sep-
arates protection from translation in a single address space by shar-
ing the page table among all processes and using an independent
protection table for each process. Only page-sized objects can be
protected and a Protection Lookaside Buffer (PLB) is used to cache
recently used protection table entries. When a memory access is
performed, the PLB is probed in parallel with the virtually ad-
dressed cache to detect protection violations. The TLB is shared by
all processes and is only accessed on a cache miss.

Domain-Page protection is a viable alternative to guarded point-
ers for multithreaded computers, in that it supports fast changes of
protection domain. An advantage that guarded pointers have over
Domain-Page protection is that guarded pointers do not require the
additional lookaside buffer that Domain-Page schemes require to
operate efficiently. This is particularly significant for machines that
need to support multiple cache accesses/cycle, as the PLB would
have to be replicated or multi-ported.

HP PA-RISC: The HP PA-RISC protection architecture [18]
performs access control at the page level. Each TLB entry contains
a physical page number, permission information, and a page group
identifier. If a TLB hit occurs but the page group identifier does not
match that provided by the process, an access violation fault occurs.
Four special registers are provided to allow a process to quickly
access four separate page groups. Each of these must be compared
with the page group number provided by the TLB on every memory
reference. Thus, two processes in different protection domains
may share data by having access to the same page group. Context
switching is relatively inexpensive as the TLB and cache need not
be flushed.

Page-group protection is essentially an inexpensive implemen-
tation of segmentation, with the four special registers acting as
segment registers. With page-group protection, access control is
on a large grain since the smallest unit of sharing is a physical
page. Furthermore, only five page groups (four via special registers
plus one global) may be quickly accessed. Guarded pointers elim-
inate the need for special registers and provide protection at more
flexible granularities. In addition, page-group protection requires
a TLB lookup and comparisons of the page-group number to four
registers on every memory access. This is prohibitively expensive
for a multi-banked cache implementation.

5.2 Segmentation

Segmentation-based memory systems provide protection on arbitra-
ry-sized regions of memory through the use of segment descriptors.
Any operation involving an address is checked against the segment
descriptors to ensure that it uses the address in an appropriate man-
ner, and that segment bounds are not crossed. Segment descriptors
often encode the types of accessesthat may be performed on the seg-
ment, allowing processes to be granted limited access to regions of
memory. Since managing variable-length transfers of data between
different levels of a memory hierarchy is difficult, segmentation is
often implemented on top of a paging system which is responsible
for transferring fixed size pages.

Segmentation has been used in systems such as the B5000 [20]
and Multics [4, 6, 10] to provide separate address spaces with con-
trolled sharing in a multiprogrammed system. Other recent sys-
tems, such as Monads [23], also employ a traditional segmentation
scheme to support protection and relocation. Methods exist to re-
duce the redundant translation overhead required by performing
segmentation in addition to paging [7]. A major disadvantage of
segmentation is the fixed division between the segment identifier
and offset fields of an address which limits both the number of
segments and the size of the largest segment that can be repre-
sented. For example, in Multics, a segment is limited to 2'8 words
and in the 8086 [14], a segment is limited to 2'® bytes. While the
80386 [15] extends the maximum segment size to 2°* bytes, using
these segments is unwieldy as it requires handling 48-bit pointers
and one process can address at most 2'® segments. Guarded point-
ers borrow from [8] the use of a floating-point address in which the
boundary between the segment identifier and the offset field may
vary depending on segment length. With guarded pointers, one may
address 2°* one-byte segments, a single 2> byte segment, or any
power of 2 division in between.

Several features of segmentation make it unacceptable for mul-
tithreaded processors. First is the cost of swapping segment de-
scriptors for every thread switch. Each process has its own table
of segment descriptors that describe the memory that the process
can access. The cost of changing the table on a process switch is
similar to that required to change the translation function in a paged
protection scheme, as described above.

Second, two levels of translation are typically required: one
to translate segments and offsets to virtual addresses and one to
translate virtual addresses to physical addresses. Determining a
virtual address from a segment and offset must be performed before
accessing the cache, thus slowing down all memory references. Fi-
nally, as in a paging-only system, sharing data requires operating
system intervention and replication of protection information. Ev-
ery process must have its own segment descriptor for each shared
segment and only the operating system can make these available.

5.3 Capabilities

Capabilities [12, 19] provide an efficient means of security for a
machine that needs to change protection domains frequently. By
encoding access rights into the handle that a process uses to ref-
erence an object, a capability-based system allows the operating
system to restrict access to objects by providing each process with
only those capabilities that it needs. Processes can then be inter-
leaved without security violations, as a process can only access



those objects for which it has a capability. Sharing data between
processesis accomplished by giving each process a capability to the
shared object. Most capability-based systems also provide a variety
of permissions (such as read, read/write, execute) so that different
processes may have different access rights to the same object.

Previous hardware implementations of capabilities, including
the IBM System/38 [13] and the Intel 432 [24], have required
two levels of translation: one to translate capabilities to virtual
addresses, and the second to translate virtual addresses to physi-
cal addresses. The additional latency to access memory imposed
by two-level translation has prevented traditional capabilities from
becoming a widely-used protection method.

Because of their size and the need to prevent them from being
altered by user code, traditional capabilities often require special
registers or storage. By encoding both the capability and the de-
scriptor into the standard data word (64 bits) and tagging it, a
guarded pointer requires no special storage and may be used to
access memory directly.

5.4 Software Techniques

Software methods may alternatively be used to prevent programs
from accessing memory in unauthorized ways. If the compiler and
linker can guarantee safe execution, the hardware need only provide
a single flat address space and paging.

Wahbe, et. al. [25] suggest several methods for making software
safe. A technique called sandboxing places user programs inside
isolated fault domains and prevents writes or jumps to locations
outside the fault domain. A post pass over the object file can insert
extra instructions to explicitly check for out of bounds accesses or
branches. Alternatively, the check code can set the high bits of all
addresses to be the fault domain identifier, restricting all accesses
to be within the domain. As an optimization, the code segment
can be placed in a sparsely populated region of virtual address
space, surrounded by unmapped virtual addresses. The unmapped
regions are large enough so that the immediate offsets specified in
instructions can not be used to reach any virtual addresses that are
mapped to physical locations.

Software methods suffer from several disadvantages. First,
additional instructions are required before every memory reference
that can not be statically determined to be safe. Even if a given
memory reference is usually safe, the overhead will be paid for every
reference. If the check code is inserted directly into the object file,
the check code will not be subject to compiler optimization, which
could be extremely useful for memory references within loops. In
addition, a few registers must be reserved for the check code and
not be used by the application program, in order to avoid saving
and restoring the contents of those registers on every user program
memory reference. Second, the protection scheme depends on the
use of software programming tools that enforce the protection. Any
program that is written without using these tools is able to violate
the protection scheme at will. Because of this weakness, it would
be difficult to provide security through software in an environment
where users may be malicious, as they could hand-code programs
that violate the security scheme.

6 Conclusion

In this paper we have introduced guarded pointers as a hardware
mechanism to implement capability-based protection and allow fast
multithreading among threads from different protection domains,
including concurrent execution of user programs and the operating
system. We have described the M-Machine as an example of an
architecture which implements guarded pointers.

A guarded pointer is an unforgeable handle to a segment of
memory. Each pointer is comprised of segment permission, length,
base, and offset fields. The advent of 64-bit machines allows this
information to be encoded directly in a single word, without unduly
limiting the memory address space. An additional tag bit is required
to prevent a user from illicitly creating a guarded pointer. Guarded
pointers are an efficient implementation of capabilities without ca-
pability tables or mandatory indirection on memory access.

Guarded pointers can be used to implement a variety of software
systems. Threads in different protection domains can share data
merely by owning copies of a pointer into that segment. A thread
can grant another thread access to private data by passing a guarded
pointer to it. Protected entry points and cross-domain calls can be
efficiently implemented using an entry type guarded pointer.

The costs of implementing guarded pointers are minimal. An
additional tag bit is required to identify a pointer, and the virtual
address space is reduced by the number of bits required to encode
segment permissions and lengths. In a 64 bit machine, 54 virtual
address bits are left, which is ample space for the immediate future.
A small amount of hardware is also required to perform permission
checking on memory operations.

Like all single global virtual address space systems, guarded
pointers permit processes from different protection domains to share
the cache and paging systems without compromising security. Also
like these systems, guarded pointers eliminate multiple translations
and permit processes to access an interleaved virtual cache without
requiring multiple TLBs. However, guarded pointers also share
some of the deficiencies of single address space memory systems
(garbage collecting virtual address space), and capability systems
(relocating and revoking access to segments).

By encoding a segment descriptor in the pointeritself and check-
ing access permissions in the execution unit, guarded pointers obvi-
ate the need to check protection data in the cache bank. This permits
in-cache sharing, which is not possible with methods that append
a process or address space identifier to the cache tag, without the
expense of providing protection tables in hardware. In addition,
guarded pointers concentrate process state in general purpose regis-
ters instead of auxiliary or special memory, reducing process state,
and facilitating fast context switching.
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