
Towards a Verified, General-Purpose Operating

System Kernel†

Jonathan Shapiro, Ph.D., Michael Scott Doerrie, Eric Northup, Swaroop
Sridhar, and Mark Miller

Systems Research Laboratory

Department of Computer Science
Johns Hopkins University

Abstract. Operating system kernels are complex, critical, and difficult
to test systems. The imperative nature of operating system implementa-
tions, the programming languages chosen, and the usually selected im-
plementation style combine to make verification of a general-purpose
operating system kernel impractical. While security policies have been
verified against models of general-purpose operating systems, no verifica-
tion has ever been accomplished for a general purpose operating system
implementation.

This paper summarizes how we are attempting to create a verified general
purpose operating system implementation for Coyotos, the successor to
the EROS system, and why we believe that there is a reasonable chance
of success.

Introduction

The current state of affairs in computer security and reliability is unsupportable.
We must find ways to build software systems that are robust and survivable, and
develop techniques and tools that can bring these development practices into
mainstream product development. The problem is foundational: there exists,
in principle, no evolutionary path from current operating systems technology
to a secure or survivable alternative. Without an operating system on which
applications can rely, secure applications and defensible systems are impossible
to build.

The only technique currently known that will allow us to build an operating
system of the required robustness is formal verification. Verification has been
successfully applied to various special-purpose critical software systems (most
notably critical flight control software), and it has become a key part of com-
mercial microprocessor development, but it has not been successfully applied to
a general purpose operating system kernel. There are several reasons for this:

⋆⋆ Copyright c© 2004, Jonathan S. Shapiro, Michael Scott Doerrie, Eric Northup, Swa-
roop Sridhar and Mark Miller. All rights reserved. This document may be reproduced
in its entirety in electronic or paper form without royalty or fee, provided that at-
tribution is preserved and this copyright notice is retained.



2

– Few operating system designs incorporate a rigorous notion of what consti-
tutes a “correct” or “consistent” state of the system.

– Few people who write operating systems understand verification.

– Current systems programming languages have no formally defined semantics,
and suffer from problematic ambiguities.

– Most operating systems have no clearly identifiable “unit of operation”
boundaries in the execution of the system where the system state is (alleged
to be) consistent. This makes correctness verification difficult or impossible.

– Most kernels use non-preemptive multithreading within the kernel.1 Even on
single processor systems, multithreading creates an exponential explosion of
the state space that the prover must consider — far beyond what is currently
feasible to verify.

– Imperative programming languages also create an exponential explosion of
the state space that the prover must consider.

– Provers, with the notable exception of ACL2, might fairly be said to present
a “programmer hostile” interface. The language of expression used by the
prover needlessly departs from the language used by the programmer, im-
posing a significant conceptual translation burden on the developer.

– Projects that contemplate the use of verification tools often relegate respon-
sibility for verification to a side team in order to relieve programmers of
the “burden” of verification. One result is systems that cannot be verified
because their authors don’t know how.

Given these issues as initial conditions, it is understandable that verification is
not a high priority for operating system developers in the wild. In spite of this,
there are at least three results which suggest that verifying a suitably structured
microkernel system may now be feasible:

PSOS (1980) While the system was never completed, a substantial framework
for verification was crafted for the PSOS system. This work had heavy in-
fluence on the subsequent evolution of nqthm and later ACL2.

See: A Provably Secure Operating System: The System, Its Applications, and

Proofs [9].

KIT (1989) Bevier’s verification of the KIT kernel against a simple micro-
processor model is of approximately the same order of complexity as the
verification required for a modern microkernel.

See: Kit: A Study in Operating System Verification [2].

VLISP (1995) The VLISP project’s successful verification of the pre-scheme
compiler and runtime system similarly suggests that programs of the size

1 The UNIX kernel’s sleep() call, for example, typically causes a context switch into
a different kernel continuation.



3

and complexity of modern microkernels should be “within reach” of modern
automated provers, provided they can be implemented in a suitable language.

See: The VLISP Verified Scheme System [5].

The Hopkins Systems Research Laboratory is starting work on the Coyotos
kernel, a successor to the EROS system [13]. As part of this, we are trying to
achieve a verified implementation of the kernel and the system’s key utilities.
We are pursuing this for several reasons:

– It is an intrinsically interesting research challenge.

– We are attempting to build a system that exceeds the requirements for EAL7
evaluation under the Common Criteria evaluation scheme. We believe that
a fully verified correspondence argument for the implementation is easier to
achieve, more rigorous, and easier to maintain than the semi-formal corre-
spondence required for EAL7 evaluation.

– An “open proofs” system (one in which both the system code and the verifi-
cation of correctness are public) would serve as a public example of how to go
about building a robust, secure system. It would allow customers to hire in-
dependent experts to validate the verification. It would allow experimenters
to attempt changes to code and proof as a learning vehicle.

– An open source, open proofs demonstration that verified systems are possible
may fundamentally change both user expectations about critical systems
and the “standard of diligence” that must be established to sustain claims
of non-liability for critical system software flaws.

– We don’t see any other way to get to long-term survivable software systems,
especially for critical infrastructure.

For kernels and similar critical systems, we need to know that all operations
terminate in a (tightly) bounded number of steps. This means that verification
must be concerned with establishing total correctness properties. The EROS
system is unusual in having a rigorous notion of consistency, an existing formal
system model (with a successful paper verification [14]), and a well-defined notion
of “unit of operation” (it is an interrupt-style kernel). Bounded time operations,
and therefore termination, were a specific and pervasive concern in the EROS
design (and its predecessors). Every invocation on the EROS kernel honors the
ACID properties, which allows us to express system call semantics as atomic,
consistency-preserving transformations on a well-defined system state. Coyotos,
the EROS successor, retains these properties and significantly reduces both the
semantic and implementation complexity of the kernel.

A key problem we face is the problem of programming language. There exist
languages such as ML that are strongly typed and formally specified. While
considerable work would be required, it is in principle straightforward to take an
approach similar to that of ACL2 [7]: capture a full semantics for an ML language
subset (notably exluding the module system) in an automated prover, and reason



4

about programs written in this subset. Unfortunately, ML and similar languages
have several key limitations from the perspective of kernel development:

– They do not provide machine-level, fixed size representation types.

– They provide insufficient control over low-level data layout. In particular,
systems codes require the ability to specify both unboxed composite types
and unboxed references. This is both a performance and a correctness issue;
the layout of certain data structures is dictated by the underlying hardware.

– The incorporation of full tail recursion in the language specifications means
that high-performance compiler implementations cannot exploit C as a struc-
tured assembly language [1][16]. This significantly increases the cost of im-
plementing a suitably modified subset of these languages. Fortunately, full
tail recursion is not a real-world requirement. In practice, a more constrained
form of tail recursion is probably sufficient.

– Most safe languages rely intensively on dynamic memory allocation. In some
cases this reliance is embedded so deeply that it is impossible to write pro-
grams that do not allocate memory dynamically. Kernels must be capable
of operating with predictable variance in a fixed-memory environment. Dy-
namic allocation renders this problematic.

– With the exception of ACL2, no existing language provides means to in-
tegrate theorems and their proofs into the body of the program. From an
assurance and robustness perspective, these meta-statements about the pro-
gram are as important as the program itself.

In light of this, a key challenge for the Coyotos effort will be defining a pro-
gramming language whose unambiguous semantics can be formally specified in
mechanical form, is capable of capturing the efficiencies of low-level representa-
tion, and can be successfully used by hardcore systems programmers.

The balance of this paper briefly highlights some relevant attributes of the EROS
system architecture, our current plans for the evolution to Coyotos, our approach
to building an implementation language, and some of the properties that we
would ultimately like to verify.

EROS

EROS is a high-performance, capability-based operating system that runs on
conventional microprocessors [13]. It minimally requires a processor that provides
paged memory management hardware and a reliable separation between user and
supervisor execution. The current version of EROS executes on the Pentium
processor family. The predecessor system, KeyKOS [4] has been ported to the
Motorolla 88000, the IBM System/360, and the Sun SPARC processor families.

Along with the L4 system [11], EROS stands as one of two major remaining
microkernel-based research systems. Where L4 has historically focused on sys-



5

temic performance issues in microkernel-based systems, EROS has focused pri-
marily on security. Where L4 has shown that microkernel-based systems can
be fast, EROS has shown that they can also be protected without sacrificing
performance.2

System Model

The architectural model of EROS is that the kernel provides a protected exten-
sion of the underlying microprocessor, augmenting the hardware features with
support for kernel-protected capabilities and implementing a canonical interface
to the system’s memory mapping and exception handling mechanisms using ca-
pabilities as the fundamental protection mechanism.

One may view the execution of an EROS system as the steps of a sequential
state machine whose transitions consist of:

– Execution of a single, user-mode machine instruction, or

– Delivery of an exception notification to a user-level fault handler via IPC,
or

– Execution of an application-initiated “invoke capability” exception, or

– Processing of some pending interrupt event, which may cause a preemption
of the current user process.

This view of EROS in terms of an explicit operational semantics is founda-
tional in the EROS security model. The execution of an EROS system begins
in a hand-constructed consistent state, and the continued security of the system
rests on an inductive argument that every instance of the operations identified
above performs an atomic, consistency-preserving transformation on the global
system state. To support the logic of this argument, EROS is transparently per-
sistent. Every few minutes, an instantaneous global checkpoint is taken of the
entire system state. This snapshot is then incrementally written to disk as ex-
ecution proceeds. When the system powers up, it resumes execution from the
most recently saved checkpoint image.

A key underlying aspect of this model is that EROS kernel invocations are
atomic. Every kernel invocation (including IPC) proceeds in two phases:

Prepare During the prepare phase, all required resources are determined to
be in memory and are pinned in memory for the duration of the current
operation. If an object is to be mutated by the current operation, the prepare
phase reserves sufficient space in the system checkpoint area to hold the
modified version of the object.

2 This characterization is not entirely fair. The L4 effort has pursued a number of
areas, including real time systems and control of systemic performance, that have
not been addresed by the EROS effort.



6

Action During the action phase, the requested operation is performed. By both
design and requirement, the action phase is not permitted to fail. More
precisely, the only form of failure permitted during the action phase is to
halt the machine. This may occur, for example, if memory is discovered to
have an ECC error. During the action phase, the process is not permitted
to block, and the kernel is obligated to execute the current invocation to
completion.

During the prepare phase, no “semantically observable” modification to the sys-
tem state is permitted. Changes to kernel caches, rewriting of internal kernel data
structures into alternative representations, and queuing of invoking processes on
event completion queues in the kernel are not considered to be semantically
observable events.3

EROS is an interrupt-style kernel. In the event that some action occurs dur-
ing the prepare phase that might violate a correctness precondition previously
established during the prepare phase, the current system call is restarted from
scratch. No kernel stack is ever retained by a blocked process. Because no se-
mantically observable mutations have been allowed during the prepare phase,
this “abandon and restart” policy is always safe (though it does introduce proof
obligations concerning liveness properties).

At some well-defined point on every static control flow path in the kernel, there
is a conceptual boundary line that we refer to as the “commit point.” This line
marks the transitional control point between the prepare phase and the action
phase. In the current kernel implementation, there is an explicit call to an inlined,
empty procedure at every commit point. This allows us to use static control flow
model checking to verify both that semantically observable mutations occur only
after the commit point and that no process performs any action after the commit
point that might block.

Finally, there is a global design requirement that every kernel path must complete
in O(1) steps — that is, within a known constant number of instructions. In fact,
we require that this be a (somewhat fuzzily expressed) small constant bound.
Indeed, one of the significant changes between the earlier KeyKOS system and
the current EROS design was the elimination of the last kernel operation that
lacked a small constant time bound.

Though neither the KeyKOS nor the EROS designers realized it at the time, both
groups informally but rigorously introduced measure conjectures into the system
implementations. With the benefit of deeper hindsight, all of the recursive and
iterative algorithms of the EROS kernel have straightforwardly stated and veri-
fiable measure conjectures. KeyKOS, with the exception of a single scheduling-
related algorithm, also had this property.4

3 Process en-queuing is observable in the form of latency, but this type of observation
has no effect on the overt security properties of the machine.

4 In KeyKOS, the flush algorithm for the meter tree could hypothetically visit every
meter node in main memory. While this visitation is bounded by the size of memory,



7

Capability-Based Protection and Access Control

Without exception, every operation performed by an EROS application, includ-
ing the execution of non-privileged instructions, may be expressed as a capability
invocation. For normal instructions, the process is implicitly invoking a process
capability to itself in order to rewrite its register state. For kernel calls, the ca-
pability invoked is directly identified in the invocation. For memory operations,
the capability to the object ultimately manipulated (the page) is reachable by
traversing a path beginning from the per-process address space capability, and
computing the path access rights as an aggregation of the stepwise permissions
granted by each capability in the path. Finally, exceptions may be modeled as an
invocation of a capability to the appropriate fault handler. In consequence, the
permission to perform any action is straightforwardly defined, easily checked,
and conveniently accumulated during the traversal of a referencing path that
needs to be traversed in any case to locate the target object of the operation.

In most capability systems, the permission accumulation rule is to begin with
maximal permission and compute the intersection of these initial permissions
with the stepwise permissions as the path is traversed. In the EROS system, the
weak access restriction somewhat complicates this rule.

The weak access restriction provides a “transitive read-only” permission. There
is (transitively) no way to obtain any capability that conveys mutate authority
by proceeding from a weak capability. In practice, this restriction is performed
stepwise: fetching a capability (even within the kernel) from an object named by
a weak capability returns a weakened variant of the fetched capability: one whose
access restrictions include both read only and weak. In some cases, this down-
grade is performed conservatively by returning an invalid capability. Because the
next capability at each step in the path traversal is conditionally transformed
based on the permissions of the currently traversed path prefix, the simple accu-
mulation rule must be replaced by fusing the accumulation of permissions into
the operational definition of path traversal. This fusion proves to be useful, as it
helps to reduce the possibility of a discrepancy between the traversals performed

by the machine and the traversals permitted by the machine.

The weak access right is not essential from the standpoint of expressive power. A
system without it can be constructed in such a way as to preserve overt confine-
ment and partitioning. The weak access right is essential from the standpoint of
resource efficiency and performance. Using the weak access right, for example,
it becomes possible for two processes to share access in copy-on-write form to a
common read-only graph of objects, even if the shared graph contains internal,
write-authorizing capability references. This proves to be a significant enabler
for some common microkernel design patterns, most notably the use of user-
defined memory fault handlers. The weak access right also significantly reduces

and a bounding measure conjecture can therefore be stated for it, it does not satisfy
the “small constant bound” design objective shared by the two systems.



8

the number of operations that must be monitored and interposed by a reference
monitor to implement mandatory access control policies.

The EROS confinement mechanism is constructed on top of the weak right.
Lampson defines confinement as inability to communicate over unauthorized
channels [8]. The EROS constructor mechanism enforces overt confinement (i.e.
confinement ignoring covert channels). While this mechanism does not com-
pletely satisfy the Lampson definition, the enforcement of covert channel restric-
tions is largely an orthogonal problem. In EROS, a process is overtly confined
iff it can be shown that all of its authority to mutate originated with capabil-
ities provided by the instantiating client. That is, all of the initial capabilities

held by the program instance at instantiation time are (transitively) immutable.
This test is implemented by a user-mode, trusted application: the constructor.
The constructor performs a static test prior to instantiation to validate that all
of the immediate initial capabilities (as opposed to those that are transitively
reachable from these) are either:

– Trivially safe kernel-implemented capabilities, or

– Weak (therefore transitively immutable), or

– Capabilities to another constructor that in turn certifies its instantiations as
confined. This is acceptable because the constructor is trusted code and one
constructor is able to authenticate another. This case provides an inductive
extension of the previous two rules, and enables instantiation of complex
confined subsystems with rich behavior.

It has been demonstrated in the KeySafe [10] system that the constructor pro-
vides a sufficient foundational mechanism to implement mandatory access con-
trols such as multilevel security. Of perhaps greater pragmatic importance, per-
vasive use of the constructor as a process instantiation mechanism provides a
foundation for defense in depth, as demonstrated in the EROS network stack
[12] and the EROS trusted window system [15].

Resource Allocation

If we are to reason about the total correctness of a system, resource allocation is a
critical concern. In order to return a correct result, a process must have sufficient
space and compute time. This introduces a proof obligation concerning resource
allocation that must be discharged. Determining resource sufficiency is possible
if the maximal resource requirements of all processes are fully known and the
system is sufficiently provisioned. This specialized solution can be extended using
temporal non-interference reasoning to further cases, but in general the resource
sufficiency problem is intractible.

From the kernel perspective, it is necessary either to reason explicitly about
resource allocation or to somehow avoid such reasoning. EROS takes the lat-
ter approach by eliminating kernel resource allocation altogether. The kernel is



9

responsible for the safety of kernel resources, but it is not responsible for the
allocation of these resources. Responsibility for resource allocation is delegated
to (trusted) application level code.

In EROS, this property is slighty relaxed by allowing the kernel to cache pro-
tected state for performance reasons. In some sense, this form of caching mul-
tiplexes a fixed resource over unbounded usage demand, but the kernel design
ensures that every cache can either be discarded without observable semantic
consequence (again barring latency) or written back into some definitive repre-
sentation object that was allocated by a user-level allocator. The end result is
that the kernel is entirely deadlock-free.

This design approach extends to address space mapping structures as well. In
EROS, the address space of a process is defined by explicitly user-allocated
data structures called nodes. The hardware mapping tables are constructed by
the kernel on demand by traversing the node structures, which are the definitive
statement of the mapping. The hardware structures are managed as a discardable
cache. In addition to its role in address space definition, the EROS node structure
is also used as the persistent representation of process state.

The EROS address space definition approach is in contrast to the L4 map oper-
ation, which implicitly allocates a kernel mapping database node. The difficulty
with the mapping database node is not that it is implicitly allocated,5 but that
its state is definitive and unaccounted. If the mapping database node is dis-
carded, it is not always possible to reconstruct the mappings that depended on
that mapping database node. This induces restrictions on application use of the
L4 map operation in order to ensure that the mapping database nodes can be
discarded. To our knowledge, no current L4 implementation treats the mapping
database as a cache, and the practical design implications of such treatment have
not been explored in current L4-based systems.

From EROS to Coyotos

Coyotos is the successor to the EROS system. While EROS has satisfied most of
our research objectives, the system suffers from several practical impairments:

– Though it simplifies security reasoning, transparent persistence is not cleanly
compatible with translucent network operations.

Persistence is removed in Coyotos.

– The EROS node data structure, which was introduced to support persistence,
complicates both the implementation and the specification of the system:

5 The map operation can be implemented in such a way that every map invocation
allocates exactly one mapping database node, so the database node allocation may
be viewed as explicit rather than implicit. The L4 specification, however, does not
require such an implementation.



10

• In effect, EROS nodes reify capability storage, and require us to reason
about kernel memory type safety in layered fashion. While the atomicity
properties of the kernel interface make this possible, the constraints are
difficult to understand and to reason about (formally or informally), and
they significantly complicate the kernel implementation by introducing
what may be thought of as cache coherency constraints across different
representation caches.

• EROS nodes do not provide a convenient representation of address spaces.
Nodes have 32 slots, and this induces a structural constraint that shared
subspaces must be expressed as aggregations of 32k page units. In prac-
tice, this constraint has proven onerous for applications.

The node structure is replaced in Coyotos by first-class kernel process struc-
tures and a new memory mapping structure called a prefixed address trans-

lation tree.

– EROS and KeyKOS intentionally omitted non-blocking messaging from the
system primitive set. Similar effects can be achieved by using additional
threads as message posting agents. Unfortunately, the result is both slow and
pragmatically complicated. Without non-blocking notify, certain commonly
used mutual exclusion patterns involving transmissions combining data and
capability payloads through shared memory are very difficult to construct
efficiently.

Coyotos incorporates a non-blocking event posting mechanism.

– The current EROS IPC mechanism does not handle multithreaded receivers
gracefully, and therefore fails to adequately encapsulate details of server
implementation.

Coyotos will incorporate explicitly named communication endpoints.

– EROS implemented (in the kernel) per-process capability registers. This
proved to be constraining for applications that needed to manage large num-
bers of capabilities. A capability address space model was introduced late in
the EROS design cycle, but was never integrated effectively into the capa-
bility invocation operation.

Coyotos will provide more direct support for capability address spaces.

Explicit communication endpoints are a new feature in Coyotos, but with this
exception all of the differences mentioned above are simplifications of the existing
system that preserve all of the existing EROS design properties and constraints.
The revised invocation mechanism can likewise be implemented without violat-
ing the EROS design constraints. While there are “systems” experiments that
we intend to conduct with Coyotos, we are explicitly trying to restrict the core
Coyotos architecture to refinement and simplification rather than invention.

By far the most significant change in the Coyotos effort is that the kernel imple-
mentation, and the re-implementation of critical system services borrowed from



11

EROS, will proceed using a systems programming language with a mechanically
specified formal semantics.

BitC: A Language for Systems Programmers

We have identified in the introduction the main deficiencies of existing languages
from the perspective of kernel development: the absence of machine-level rep-
resentation types and data layout control, and the inability to write programs
that run without dynamic allocation. Clearly, we require a language with an
unambiguous formal semantics that can be mechanically captured.

It is often stated that aliasing is a fundamental impediment to analysis in lan-
guages such as C. While true, we suggest that this view is misleading. C intro-
duces many unnecessary aliasing concerns, but the problem of aliasing cannot be
eliminated by subsetting the C language. Kernels are inherently alias-intensive
programs, and reasoning about the effects of assignments through aliases is an
unavoidable part of the problem of kernel verification. For this reason, we have
not listed alias elimination as a language requirement. Pragmatically, it is ex-
tremely helpful to have a language in which idiomatic “false” aliasing can be
eliminated or reduced. It is also helpful to have a language in which the use
of idiomatically induced assignment can be eliminated, e.g. through use of tail
recursion as an alternative to looping constructs.

One advantage to writing a workshop paper after the workshop is that the paper
has the opportunity to reflect some of what has been learned in the workshop. In
our case, the impact has been substantial. At the workshop, we introduced BitC
as a language in the intersection between Scheme and C. We added machine-level
representation types and C-style structures to Scheme, eliminated operations
that allocated storage (including closure values), and prohibited mutation of
local variables. One goal of the BitC design was to arrive at a language that
could be directly emitted to C in a very small code generator — small enough to
be credibly validated by inspection. Eventually, we intend to generate machine
code directly.

Following the discussions at the workshop, our ideas about BitC evolved signif-
icantly. We came to realize that significant transformations on BitC programs
would be required to rewrite programs into a form suitable for direct code gen-
eration, and that these transformations would ultimately need to be verified.
While the kernel subset language must still avoid dynamic allocation, the key
issue in the language from a verification perspective is termination reasoning
rather than dynamic allocation. This led us to reframe some of our restrictions:

– BitC must enable the developer to straightforwardly author programs that
do not dynamically allocate storage (and we need to provide tool support to
check this). BitC need not prohibit dynamic storage allocation.

– The complete elimination of closure values was excessive. The actual require-
ment for kernel programs is to prohibit upward escaping closure values that



12

capture local bindings (because these require dynamic allocation). There is
no difficuty in using closure values defined at top level, or closure values that
might be hoisted to top level without alteration of meaning. This alteration
allows us to re-introduce some idioms for data structure traversal that must
otherwise be expressed less directly.

Subsequent to the workshop, we introduced several new design elements into
BitC:

– Parametric polymorphism supported by pattern matching and a type infer-
ence mechanism.

– Tail recursion, but limited to the case in which all of the procedures par-
ticipating in the tail recursion requirement are bound simultaneously in the
same letrec-like form.

– Higher-order procedures, but using a surface syntax that discourages curried
invocations. Because the use of escaping closure values is prohibited in the
kernel subset, curried procedures cannot be used within the kernel.

– An ML-like tuple and datatype model.

– Vector types

Finally, there was one obvious issue that we addressed only obliquely (as “C-
style structures”) at the workshop: the need for unboxed aggregates and unboxed

references. These have now been incorporated into BitC. These features in turn
require us to ensure that the temporal scope of references must be bounded by the
temporal scope of the referenced object, but this appears to be straightforward.

The provisional result appears to be a language with an unambiguous formal
semantics that can be used to implement critical applications (including the BitC
compiler). BitC has a clean subset in which the kernel can be implemented. The
resulting language should probably no longer be thought of as “an intersection
of C and Scheme.” Rather, BitC is best viewed as ML with representation types
and unboxing, the module system excised, and a parsable, lisp-like concrete
syntax. Also, BitC discourages currying in favor of tuplization. As the language
design progressed, we gained new appreciation for the “minimal mechanism”
character of ML. The foundational semantics of the current BitC language is
not substantially larger that than of the workshop version. Matters are now
sufficiently far along that we are examining how to introduce measure conjectures
and theorem statements into the language, and considering how to mechanically
capture the reasoning about termination of an eval() procedure when it is
applied to a known-terminating program in a language that does not intrinsically
impose total types.



13

High-Level Objectives

Creating a new operating system using a new programming language involves
an absurd amount of work. It seems only reasonable to ask: what are we trying
to achieve? Before answering this question, it is useful to describe the current
context of high-assurance systems.

Our group was initially drawn to verification as a means of increased security
assurance. We are dissatisfied with the level of confidence achievable under cur-
rently standardized assurance schemes, and would like to establish a stronger
foundation for robust and secure systems.

Role of the Common Criteria

The most widely accepted statement of security assurance criteria today is the
Common Criteria [6]. The highest assurance evaluation (therefore highest confi-
dence) level in the Common Criteria scheme is known as EAL7. Its requirements
may be summarized as:

– Rigorously state your threat model and functional requirements.

– Formally state your security policy and a model of the system. Rigorously
state how the security policy addresses your threat model, and how the
system model addresses your functional requirements.

– Verify formally that the policy is enforced in the model of the system

– Show rigorously (as opposed to formally) that the implementation corre-
sponds to the model.

The approach is basically sound. The last step can (and should) be strengthened
to require formally verified correspondence. The decision to settle for rigorous
correspondence demonstration was a pragmatic compromise reflecting the per-
ceived state of the art in program verification circa 1980.

Our group has spent a fair bit of time laying the groundwork for this type of
evaluation for EROS. As our understanding of the process has increased, and we
have reached several conclusions:

1. The Common Criteria process is exceedingly difficult, not because it is con-
ceptually hard to do but because it imposes an overwhelming burden of pa-
perwork. The majority of this paperwork can be eliminated if formal methods
are used where merely rigorous methods are currently required.

2. The process as currently defined has limited real-world value. At the end
of the day, the customer isn’t running the formal system model. They are
running the code. Long experience shows that human inspection of code —
and we believe this applies to rigorous inspection as well — is simply an
inadequate source of practical security.



14

One solution to this is to extend the use of formal methods all the way to
the code.

3. There are serious problems in the Common Criteria scheme and also in the
evaluation process:

– A few evaluation requirements of the scheme induce functional require-
ments that reduce the security of the final system.

– No evaluation guidelines for evaluation above the EAL4 assurance level
(soon: EAL5) exist.6 In consequence, no public confidence is possible
because it isn’t understood what higher levels of assurance evaluation
mean.

4. In the absence of widely and publicly deployed systems that have undergone
a well-defined high-assurance evaluation process and been demonstrated by
practical experience to be defensible, there exists no empirical evidence that
the Common Criteria process works at all. In light of this, the cost of high
assurance evaluation is not objectively justified.

There is clear evidence from other domains, notably FAA Level-A flight
control systems, that the use of full formal methods is an effective means of
achieving robustness. It is likely, but not known, that this success extends
to situations where proactive attempts at compromise enter the picture,
provided that the threat model and requirements have been adequately cap-
tured. Unfortunately, no technique is known that ensures exhaustive threat
or requirement modeling.

5. The Common Criteria process embodies a fundamental and irreconcilable
conflict of interest: the party who creates the software has fiduciary influence
over the party who evaluates the software, and the absence of transparency
in the process lends itself to misuse and even abuse.

Evaluation customers (the software providers) form a “buyers cartel.” The
absence of a large supply of business for evaluators creates an economic en-
vironment in which the diligence of the evaluation itself becomes negotiable.
Evaluators are understandably reluctant to confirm this publicly, but it is
widely acknowledged privately as a pervasive problem. The quality standards
of the U.S. certified evaluation providers have been steadily deteriorating
since the Common Criteria process was first deployed.

6. Taking these issues together, the Common Criteria serves primarily as a
means of protecting incumbent vendors to governments rather than a tool
for improving objectively measurable security.

As a result of these issues, Shapiro recommended in response to inquiries from
members of the United States Senate during the Clinton administration that
the U.S. government “evaluated product” purchasing requirement be dropped

6 As calibration, EAL4 is the current evaluation assurance level of Microsoft’s Win-
dows XP (and many other products). No EAL4 system can be reliably deployed in
hostile environments (such as open networks).



15

for all but the most sensitive applications, and that the latter insist on and
fund the mechanisms to produce EAL6 or better evaluation processes. The first
recommendation appears to have been accepted. The second was not.

An Alternative

Taken as a methodology, there is much in the Common Criteria that is worth
borrowing. We propose to overcome some of its weaknesses by extending the
concept of open source systems to open proof. By “open proof,” we mean systems
in which:

– Source code for the software artifact is publicly accessible.

– A public statement of the requirements met by the system exists in both
definitive formal specification and non-normative informal language.

– A full formal verification that the implementation meets these requirements
has been performed using a publicly available proof engine.

– The resulting proof trail, sufficient to allow a third party to independently
re-execute the verification, is published in machine-readable form.

The last point bears emphasis. In an environment where software must be
adapted and customized by the customer, proof checking is insufficient. The
customer must be able to re-execute the entire proof process on locally modified
versions of the system.

Realistically, we do not expect that software customers will re-execute these
proofs, nor that they would understand directly what the proofs mean. We do

expect that customers facing potential liability in critical deployments may hire
domain experts to check the results as part of software acceptance qualification.

Ultimately, our objective is to redefine the standards of acceptable practice in
critical software by demonstrating publicly that formal methods are not “too
hard” or somehow impractical. If we succeed, the “trust me” approach to soft-
ware security will become economically non-viable.

Verification Goals for Coyotos

The properties that we would like to verify for Coyotos can be divided into low-
level (tactical) properties about the implementation and overall system model
correspondence properties.

Implementation Properties

Design Rules The Coyotos kernel inherits a (relatively short) list of design
rules that help to reinforce both the atomicity and correctness objectives of



16

the kernel. Among these, the most important is the “two phase” rule. We
would like to formalize and rigorously check this rule and several others that
devolve from it. A few of these have recently been validated using control
flow model checking [3].

Access Check Enforcement We would like to formalize the access rules for
each type of system object, and verify that the actual implementation honors
the capability-defined access rights at all appropriate points.

Semantic Observability A difficult check we would like to validate is to for-
malize what is meant by “semantic observability” and verify that the prepare
phase does not make semantically observable modifications to the system
state.

The Constructor Assumptions The constructor verification relies on the as-
sumption that certain kernel-implemented capabilities were trivially safe and
that weak capabilities are transitively read only. Both of these assumptions
should be verified.

Address Translation Because address translation data structures might vio-
late both the type safe heap of the kernel and the overall security of the
machine, we wish to verify that the algorithm by which the hardware mem-
ory map is constructed implements a correctness-preserving translation from
the software-defined mapping structures.

Serializability In the SMP version of the kernel, we would like to verify at
the end of each kernel invocation that there exists some sequential, non-
overlapping sequence of kernel calls that can account for the system state.

Memory Safety We would like a kernel that is known to be “mostly mem-
ory safe.” Certain hardware data structures, most notably the process and
memory management structures, necessarily require low-level manipulation.

Space Bank Isolation Contract The Coyotos storage allocator must ensure
that no resource is simultaneously allocated to more than one requestor.
This so-called “exclusively held” property is foundational for confinement
and higher level mandatory policy. It should be possible to formalize and
verify this property.

System Model Correspondence Properties

Our earlier work on confinement verification yielded a formal system model in
which the system state and the key system operations were formalized in an
operational semantics for an abstracted machine. As a practical matter, this
formalization was too high level to be useful for correspondence checking of the
real kernel implementation.

We would like to create a more detailed abstract system model, and show that
there are fairly direct correlations between this abstract system model and our
actual implementation. What this means in practical terms is something we are
reluctant to speculate on until we understand this part of the process better.



17

Conclusion

Last year, Shapiro authored a controversial column for IEEE Software entitled
Understanding the Windows EAL4 Evaluation. While the column was widely
(and correctly) taken as an indictment of the Microsoft evaluation, astute readers
recognized in it a much deeper indictment of the Common Criteria process and
the current state of computer security in the wild. The current state of affairs
in both security and reliability is unsustainable.

Progressive adoption of software verification techniques in critical systems of-
fers the possibility of a major improvement in the robustness and security of
day-to-day systems. Our hope with the Coyotos project is to demonstrate that
these methods are much more realistic today than is widely understood. We in-
tend to craft a set of tools for creating more robust, high-efficiency system code
and provide a publicly accessible, well-documented exemplar for how the tool is
applied. Along the way, we intend to create an operating system platform that
might be suitable for use in critical applications including critical infrastructure,
life-critical systems, and operationally critical business applications.

References

1. Bartlett, J. F: Scheme!C: A Portable Scheme-to-C Compiler. Technical Report WRL
Research Report 89/1, Digital Western Research Laboratory, Jan 1989.

2. Bevier, W. R.: Kit: A Study in Operating System Verification. IEEE Transactions
on Software Engineering. 15(11). 1989. pp. 1382–1396.

3. Chen, H., Shapiro, J. S.: Using Build-Integrated Static Checking to Preserve Cor-
rectness Invariants. Proc. 2004 ACM Symposium on Computer and Communications
Security. Oct. 2004.

4. Hardy, N.: The KeyKOS Architecture. Operating Systems Review 4(19), Oct. 1985,
pp. 8–25.

5. Guttman, J. D., Ramsdell, J. D., Swarup, V.: The VLISP Verified Scheme System.
Lisp and Symbolic Computation, 8(1-2), 1995, pp. 33–110.

6. —: Common Criteria for Information Technology Security, International Standards
Organization. International Standard ISO/IS 15408, Final Committee Draft, version
2.0, 1998

7. Kaufmann, M., Moore, J. S.: Computer Aided Reasoning: An Approach, Kluwer
Academic Publishers, 2000.

8. Lampson, B. W.: A Note on the Confinement Problem. Comm. ACM. 16(10), 1973,
pp. 613–615.

9. Neumann, P. G., Boyer, R. S., Feiertag, R. J., Levitt, K. N., Robinson, L.: A Prov-
ably Secure Operating System: The System, Its Applications, and Proofs. Computer
Science Laboratory Technical Report CSL-116, 2nd ed., May 1980, SRI Interna-
tional.

10. Rajunas, S. A.: The KeyKOS/KeySAFE System Design Tehnical Report SEC009-
01, Key Logic, Inc., March 1989.

11. —: L4 eXperimental Kernel Reference Manual. System Architecture Group, Dept.
of Computer Science, Universität Karlsruhe. 2004



18

12. Sinha, A., Sarat, S, Shapiro, J. S.: Network Subsystems Reloaded. Proc. 2004
USENIX Annual Technical Conference. Dec. 2004

13. Shapiro, J. S., Smith, J. M., Farber, D. J.: EROS, A Fast Capability System. Proc.
17th ACM Symposium on Operating Systems Principles. Dec 1999, pp. 170–185.
Kiawah Island Resort, SC, USA.

14. Shapiro, J. S., Weber, S.: Verifying the EROS Confinement Mechanism. Proc. 2000
IEEE Symposium on Security and Privacy. May 2000. pp. 166–176. Oakland, CA,
USA

15. Shapiro, J., Vanderburgh, J. Northup, E, Chizmadia, D: Design of the EROS
Trusted Window System. Proc. 13th USENIX Security Symposium. 2004

16. Tarditi, D., Lee, P., Acharya, A.: No Assembly Required: Compiling Standard ML
to C. Letters on Programming Languages and Systems. June 1992.


