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Abstract
This technical report describes CHERI ISAv6, the sixth version of the Capability Hardware
Enhanced RISC Instructions (CHERI) Instruction-Set Architecture (ISA)1 being developed
by SRI International and the University of Cambridge. This design captures seven years of
research, development, experimentation, refinement, formal analysis, and validation through
hardware and software implementation. CHERI ISAv6 is a substantial enhancement to prior
ISA versions: it introduces support for kernel-mode compartmentalization, jump-based rather
than exception-based domain transition, architecture-abstracted and efficient tag restoration,
and more efficient generated code. A new chapter addresses potential applications of the
CHERI model to the RISC-V and x86-64 ISAs, previously described relative only to the 64-bit
MIPS ISA. CHERI ISAv6 better explains our design rationale and research methodology.

CHERI is a hybrid capability-system architecture that adds new capability-system primi-
tives to a commodity 64-bit RISC ISA enabling software to efficiently implement fine-grained
memory protection and scalable software compartmentalization. Design goals have included
incremental adoptability within current ISAs and software stacks, low performance overhead
for memory protection, significant performance improvements for software compartmentaliza-
tion, formal grounding, and programmer-friendly underpinnings. Throughout, we have focused
on providing strong and efficient architectural foundations for the principles of least privilege
and intentional use in the execution of software at multiple levels of abstraction, preventing and
mitigating vulnerabilities.

The CHERI system architecture purposefully addresses known performance and robust-
ness gaps in commodity ISAs that hinder the adoption of more secure programming models
centered around the principle of least privilege. To this end, CHERI blends traditional paged
virtual memory with an in-address-space capability model that includes capability registers,
capability instructions, and tagged memory. CHERI builds on C-language fat-pointer litera-
ture: its capabilities describe fine-grained regions of memory and can be substituted for data or
code pointers in generated code, protecting data and also improving control-flow robustness.
Strong capability integrity and monotonicity properties allow the CHERI model to express a va-
riety of protection properties, from enforcing valid C-language pointer provenance and bounds
checking to implementing the isolation and controlled communication structures required for
software compartmentalization.

CHERI’s hybrid capability-system approach, inspired by the Capsicum security model, al-
lows incremental adoption of capability-oriented design: software implementations that are
more robust and resilient can be deployed where they are most needed, while leaving less criti-
cal software largely unmodified, but nevertheless suitably constrained to be incapable of having
adverse effects. Potential deployment scenarios include low-level software Trusted Computing
Bases (TCBs) such as separation kernels, hypervisors, and operating-system kernels, as well
as userspace TCBs such as language runtimes and web browsers. Likewise, we see early-use
scenarios (such as data compression, protocol parsing, and image processing) that relate to
particularly high-risk software libraries, which are concentrations of both complex and histori-
cally vulnerability-prone code exposed to untrustworthy data sources, while leaving containing
applications unchanged.

1We have attempted to avoid confusion among three rather different uses of the word ‘architecture’. The ISA
specifies the interface between hardware and software, rather than describing either the (micro-)architecture of a
particular hardware prototype, or laying out the total-system hardware-software architecture.
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Chapter 1

Introduction

CHERI (Capability Hardware Enhanced RISC Instructions) extends commodity RISC Instruc-
tion-Set Architectures (ISAs) with new capability-based primitives that improve software ro-
bustness to security vulnerabilities. The CHERI model is motivated by the principle of least
privilege, which argues that greater security can be obtained by minimizing the privileges ac-
cessible to running software. While CHERI does not prevent the expression of vulnerable
software designs, it provides strong vulnerability mitigation: attackers have a more limited
vocabulary for attacks, and should a vulnerability be successfully exploited, they gain fewer
rights, and have reduced access to further attack surfaces. CHERI allows software privilege to
be minimized at two levels of abstraction:

Architectural least privilege CHERI supports architectural least privilege through in-address-
space memory capabilities, which replace integer virtual-address representations of code
and data pointers. The aim here is to minimize the rights available to be exercised on
an instruction-by-instruction basis, limiting the scope of damage from inevitable soft-
ware bugs. CHERI capabilities protect the integrity and valid provenance of point-
ers themselves, as well as allowing fine-grained protection of the in-memory data and
code that pointers refer to. These protection properties can, to a large extent, be drawn
from structures already present in program descriptions – e.g., from C-language types,
memory allocators, and run-time linking. This application of least privilege provides
strong protection against a broad range of memory- and pointer-based vulnerabilities
and exploit techniques – buffer overflows, format-string attacks, data-pointer-corruption
attacks, control-flow attacks, and so on.

Application-level least privilege At a higher level of abstraction, CHERI supports application-
level least privilege through the robust and efficient implementation of highly scalable in-
address-space software compartmentalization using object capabilities. The aim here is
to minimize the set of application-level rights available to larger isolated software com-
ponents, building on efficient architectural support for strong software encapsulation.
These protections are grounded in explicit descriptions of isolation and communication
provided by software authors, such as through explicit software sandboxing. This ap-
plication of least privilege provides strong mitigation of application-level vulnerabilities,
such as logical errors, downloaded malicious code, or software Trojans inserted in the
software supply chain.
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CHERI is designed to support incremental adoption within current security-critical, C-
language Trusted Computing Bases (TCBs): operating-system (OS) kernels, key system li-
braries and services, language runtimes supporting higher-level type-safe languages, and appli-
cations such as web browsers and office suites. While CHERI builds on many historic ideas
about capability systems (see Chapter 11), it is also a hybrid capability-system architecture.
In this context, hybrid refers to combining aspects from conventional system designs with
capability-oriented design. Key forms of hybridization in the CHERI design include:

A RISC capability system A capability-system model is blended with a conventional RISC
user-mode architecture without disrupting the majority of key design choices.

An MMU-enabled capability system A capability-system model is cleanly and usefully com-
posed with conventional ring-based privilege and virtual memory based on MMUs (Mem-
ory Management Units).

A C-language capability system CHERI can be targeted by a C/C++-language compiler with
strong compatibility, performance, and protection properties.

Hybrid system software CHERI supports a range of OS models including conventional MMU-
based virtual-memory designs, hybridized designs that host capability-based software
within multiple virtual address spaces, and pure single-address-space capability systems.

Incremental adoptability Within pieces of software, capability-aware design can be disre-
garded, partially adopted, or fully adopted with useful and predictable semantics. This
allows incremental adoption within large software bases, from OS kernels to application
programs.

We hope that these hybrid aspects of the design will support gradual deployment of CHERI
features in existing software, rather than obliging a clean-slate software design, offering a more
gentle hardware-software adoption path.

In the remainder of this chapter, we describe our high-level design goals for CHERI, the
CHERI protection model, the CHERI-MIPS ISA design, a brief version history, an outline of
the remainder of this report, and our publications to date on CHERI. A more detailed discussion
of our research methodology, including motivations, threat model, and evolving approach from
ISA-centered prototyping to a broader architecture-neutral protection model may be found in
Chapter 10. Historical context and related work for CHERI may be found in Chapter 11. The
Glossary at the end of the report contains stand-alone definitions of many key ideas and terms,
and may be useful reference material when reading the report.

1.1 CHERI Design Goals

CHERI has three central design goals aimed at dramatically improving the security of con-
temporary C-language TCBs through processor support for fine-grained memory protection
and scalable software compartmentalization, whose (at times) conflicting requirements have
required careful negotiation in our design:
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1. Fine-grained memory protection improves software resilience to escalation paths that
allow software bugs to be coerced into more powerful software vulnerabilities; e.g.,
through remote code injection via buffer overflows and other memory-based techniques.
Unlike MMU-based memory protection, CHERI memory protection is intended to be
driven by the compiler in protecting programmer-described data structures and refer-
ences, rather than via coarse page-granularity protections. CHERI capabilities limit how
pointers can be used by scoping the ranges of memory (via bounds) and operations that
can be performed (via permissions). They also protect the integrity, provenance, and
monotonicity of pointers in order to prevent inadvertent or inappropriate manipulation
that might otherwise lead to privilege escalation.

Memory capabilities may be used to implement data pointers (protecting against a variety
of data-oriented vulnerabilities such as overflowing buffers) and also for code pointers
(supporting the implementation of control-flow integrity by preventing corrupted code
pointers and return addresses from being used). Fine-grained protection also provides
the foundation for expressing compartmentalization within application instances. We
draw on, and extend, ideas from recent work in C-language software bounds checking
by combining fat pointers with capabilities, allowing capabilities to be substituted for C
pointers with only limited changes to program semantics.

2. Software compartmentalization involves the decomposition of software (at present, pri-
marily application software) into isolated components to mitigate the effects of security
vulnerabilities by applying sound principles of security, such as abstraction, encapsula-
tion, type safety, and especially least privilege and the minimization of what must be
trustworthy (and therefore sensibly trusted!). Previously, it seems that the adoption of
compartmentalization has been limited by a conflation of hardware primitives for virtual
addressing and separation, leading to inherent performance and programmability prob-
lems when implementing fine-grained separation. Specifically, we seek to decouple the
virtualization from separation to avoid scalability problems imposed by MMUs based
on translation look-aside buffers (TLBs), which impose a very high performance penalty
as the number of protection domains increases, as well as complicating the writing of
compartmentalized software.

3. Simultaneously, we require a realistic technology transition path that is applicable to cur-
rent software and hardware designs. CHERI hardware must be able to run most current
software without significant modification, and allow incremental deployment of security
improvements starting with the most critical software components: the TCB foundations
on which the remainder of the system rests, and software with the greatest exposure to
risk. CHERI’s features must significantly improve security, to create demand for up-
stream processor manufacturers from their downstream mobile and embedded device
vendors. These CHERI features must at the same time conform to vendor expectations
for performance, power use, and compatibility to compete with less secure alternatives.

We draw on formal methodologies wherever feasible, to improve our confidence in the
design and implementation of CHERI. This use is necessarily subject to real-world constraints
of timeline, budget, design process, and prototyping, but will help ensure that we avoid creating
a system that cannot meet our functional and security requirements. Formal methods can also
help to avoid many of the characteristic design flaws that are common in both hardware and
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software. This desire requires us not only to perform research into CPU and software design,
but also to develop new formal methodologies, and adaptations and extensions of existing ones.

We are concerned with satisfying the need for trustworthy systems and networks, where
trustworthiness is a multidimensional measure of how well a system or other entity satisfies its
various requirements – such as those for security, system integrity, and reliability, as well as
human safety, and total-system survivability, robustness, and resilience, notably in the presence
of a wide range of adversities such as hardware failures, software flaws, malware, accidental
and intentional misuse, and so on. Our approach to trustworthiness encompasses hardware and
software architecture, dynamic and static evaluation, formal and non-formal analyses, good
software-engineering practices, and much more.

1.2 The CHERI Protection Model

The aim of the CHERI protection model, as embodied in both the software stack and ISA, is
to support two vulnerability mitigation objectives: first, fine-grained memory protection within
address spaces, and second, primitives to support both scalable and programmer-friendly com-
partmentalization within address spaces. The CHERI model is designed to support low-level
TCBs, typically implemented in C or a C-like language, in workstations, servers, mobile de-
vices, and embedded devices. In contrast to MMU-based protection, this is done by protect-
ing references to code and data (pointers), rather than the location of code and data (virtual
addresses). This is accomplished via an in-address-space capability-system model: the archi-
tecture provides a new primitive, the capability, that software components (such as the OS,
compiler, run-time linker, compartmentalization runtime, heap allocator, etc.) can use to im-
plement strongly protected pointers within virtual address spaces.

In the security literature, capabilities are tokens of authority that are unforgeable and dele-
gatable. CHERI capabilities are integer virtual addresses that have been extended with meta-
data to protect their integrity, limit how they are manipulated, and control their use. This
metadata includes a tag implementing strong integrity protection, bounds limiting the range of
addresses that may be dereferenced, permissions controlling the specific operations that may be
performed, as well as sealing used to support higher-level software encapsulation. Protection
properties for capabilities include the ISA ensuring that capabilities are always derived via valid
manipulations of other capabilities (provenance), that corrupted in-memory capabilities can-
not be dereferenced (integrity), and that rights associated with capabilities are non-increasing
(monotonicity).

CHERI capabilities may be held in registers or in memories, and are loaded, stored, and
dereferenced using CHERI-aware instructions that expect capability operands rather than in-
teger virtual addresses. In order to continue to support non-CHERI-aware code, dereference
of integer virtual addresses via legacy instruction is transparently indirected via a default data
capability for loads and stores, or program-counter capability for instruction fetch.

A variety of programming-language and code-generation models can be used with a CHERI-
extended ISA. As integer virtual addresses continue to be supported, C or C++ compilers might
choose to always implement pointers via integers, selectively implement certain pointers as
capabilities based on annotations or type information (i.e., a hybrid C interpretation), or al-
ternatively always implement pointers as capabilities except where explicitly annotated (i.e.,
a pure-capability interpretation). Programming languages may also employ capabilities inter-
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nal to their implementation: for example, to protect return addresses, vtable pointers, and other
virtual addresses for which capability protection can provide enhanced vulnerability mitigation.

Once capabilities are being used for pointers (e.g., to code or data) or internal addresses
(e.g., for return addresses), rights associated with those capabilities must be restricted. This is
a run-time operation performed using explicit instructions (e.g., to set bounds or mask permis-
sions) by the operating system, run-time linker, language runtime and libaries, and application
code itself:

• The operating-system kernel may narrow bounds on pointers provided as part of the start-
up environment when executing a program binary (e.g., to arguments or environmental
variables), or when returning pointers from system calls (e.g., to new memory mappings).

• The run-time linker may narrow bounds and permissions when setting up code pointers
or pointers to global variables.

• The system library may narrow bounds and permissions when returning a pointer to
newly allocated heap memory.

• The compartmentalization runtime may narrow bounds and permissions, as well as “seal”
capabilities, enforcing software interpretation, when setting up new isolated compart-
ments (e.g., to act as sandboxes).

• The compiler may insert instructions to narrow bounds and permissions when generating
code to take a pointer to a stack allocation.

• The language runtime may narrow bounds and permissions when returning pointers to
newly allocated objects, or when setting up internal linkage.

• The application programmer may request changes to permissions, bounds, and other
properties on pointers, in order to further subset memory allocations and control their
use.

The CHERI model can also be used to implement other higher-level protection properties.
For example, tags on capabilities in memory can be used to support accurate C/C++-language
garbage collection, and sealed capabilities can be used to enforce language-level encapsulation
and type-checking features. The CHERI protection model and its implications for software
security are described in detail in Chapter 2.

1.3 The CHERI-MIPS ISA
The CHERI-MIPS ISA is an instantiation of the CHERI protection model as an extension to
the 64-bit MIPS ISA [39]. CHERI adds the following features to the MIPS ISA1 to support
granular memory protection and compartmentalization within address spaces:

1Formally, CHERI instructions are added as a MIPS coprocessor – a reservation of opcode space intended for
third-party use. Despite the suggestive term “coprocessor”, CHERI support will typically be integrated tightly
into the processor pipeline, memory subsystem, and so on. We therefore eschew use of the term.
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• The contents of a set of capability registers describe the rights (protection domain) of
the executing thread to memory that it can access, and to object references that can be
invoked to transition between protection domains. We model these registers as a separate
capability register file, supplementing the general-purpose register file.

Capability registers contain a tag, sealed bit, permission mask, base, length, and offset
(allowing the description of not just a bounded region, but also a pointer into that region,
improving C-language compatibility). Capability registers are suitable for describing
both data and code, and can hence protect both data integrity/confidentiality and control
flow. Certain registers are reserved for use in exception handling; all others are available
to be managed by the compiler using the same techniques used with conventional regis-
ters. Over time, we imagine that software will increasingly use capabilities rather than
integers to describe data and object references.

Another potential integration into the ISA (which would maintain the same CHERI pro-
tection semantics) would be to extend the existing general-purpose registers so that they
could also hold capabilities. This might reduce the hardware resources required to im-
plement CHERI support. However, we selected our current approach to maintain con-
sistency with the MIPS ISA extension model (in which coprocessors have independent
register files), and to minimize Application Binary Interface (ABI) disruption on bound-
aries between legacy and CHERI-aware code for the purposes of rapid architectural and
software iteration. We explore the potential space of mappings from the CHERI model
into the ISA in greater detail in Section 3.6, as well as in Chapter 6 where we consider
alternative mappings into non-MIPS ISAs.

• New capability instructions allow executing code to create, constrain (e.g., by reducing
bounds or permissions), manage, and inspect capability register values. Both unsealed
(memory) and sealed (object) capabilities can be loaded and stored via memory capability
registers (i.e., dereferencing); object capabilities can be invoked, via special instructions,
allowing a transition between protection domains, but their fields are given additional in-
tegrity protections to provide encapsulation. Capability instructions implement guarded
manipulation: invalid capability manipulations (e.g., to increase rights or length) and in-
valid capability dereferences (e.g., to access outside of a bounds-checked region) result
in an exception that can be handled by the supervisor or language runtime. A key aspect
of the instruction-set design is intentional use of capabilities: explicit capability regis-
ters, rather than ambient authority, are used to indicate exactly which rights should be
exercised, to limit the damage that can be caused by exploiting bugs. Most capability
instructions are part of the user-mode ISA, rather than privileged ISA, and will be gener-
ated by the compiler to describe application data structures and protection properties.

• Tagged memory associates a 1-bit tag with each capability-aligned and capability-sized
word in physical memory, which allows capabilities to be safely loaded and stored in
memory without loss of integrity. This functionality expands a thread’s effective pro-
tection domain to include the transitive closure of capability values that can be loaded
via capabilities via those present in its register file. For example, a capability register
representing a C pointer to a data structure can be used to load further capabilities from
that structure, referring to further data structures, which could not be accessed without
suitable capabilities. Writes to capability values in memory that do not originate from
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a valid capability in the capability-register file will clear the tag bit associated with that
memory, preventing accidental (or malicious) dereferencing of invalid capabilities.

In keeping with the RISC philosophy, CHERI instructions are intended for use primarily
by the operating system and compiler rather than directly by the programmer, and consist of
relatively simple instructions that avoid (for example) combining memory access and register
value manipulation in a single instruction. In our current software prototypes, there are direct
mappings from programmer-visible C-language pointers to capabilities in much the same way
that conventional code generation translates pointers into general-purpose register values; this
allows CHERI to continuously enforce bounds checking, pointer integrity, and so on. There is
likewise a strong synergy between the capability-system model, which espouses a separation
of policy and mechanism, and RISC: CHERI’s features make possible the implementation of
a wide variety of OS, compiler, and application-originated policies on a common protection
substrate that optimizes fast paths through hardware support.

In order to prototype this approach, we have localized our ideas about CHERI capability
access to a specific instruction set: the 64-bit MIPS ISA. This has necessarily led to a set of
congruent implementation decisions about register-file size, selection of specific instructions,
exception handling, memory alignment requirements, and so on, that reflect that starting-point
ISA. These decisions might be made differently with another starting-point ISA as they are sim-
ply surface features of an underlying approach; we anticipate that adaptations to ISAs such as
ARM and RISC-V would adopt instruction-encoding conventions, and so on, more in keeping
with their specific flavor and approach (see Chapter 6).

Other design decisions reflect the goal of creating a platform for prototyping and exploring
the design space itself; among other choices, this includes the selection of 256-bit capabili-
ties, which have given us greater flexibility to experiment with various bounds-checking and
capability behaviors. A 256-bit capability introduces potentially substantial cache overhead for
pointer-intensive applications – so, while we use this as our architectural model, we have also
developed a “compressed” 128-bit in-memory representation. This approach exploits redun-
dancy between the virtual address represented by a capability and its lower and upper bounds
– but necessarily limits granularity, leading to stronger alignment requirements.

In our CHERI-MIPS prototype implementation of the CHERI model, capability support is
tightly coupled with the existing processor pipeline: instructions propagate values between
general-purpose and capability registers; capabilities transform interpretation of virtual ad-
dresses generated by capability-unaware instructions including by transforming the program
counter; capability instructions perform direct memory stores and loads both to and from
general-purpose and capability registers; and capability-related behaviors deliver exceptions
to the main pipeline. By virtue of having selected the MIPS-centric design choice of expos-
ing capabilities as a separate set of registers, we maintain a separate capability register file as
an independent hardware unit – in a manner comparable to vector or floating-point units in
current processor designs. The impacts of this integration include additional control logic due
to maintaining a separate register file, and a potentially greater occupation of opcode space,
whereas combining register files might permit existing instructions to be reused (with care)
across integer and capability operations.

Wherever possible, CHERI systems make use of existing hardware designs: processor
pipelines and register files, cache memory, system buses, commodity DRAM, and commodity
peripheral devices such as NICs and display cards. We are currently focusing on enforcement
of CHERI security properties on applications running on a general-purpose processor; in future
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work, we hope to consider the effects of implementing CHERI in peripheral processors, such
as those found in Network Interface Cards (NICs) or Graphical Processing Units (GPUs).

We believe that the higher-level memory protection and security models we describe span
not only a number of different potential expressions within a single ISA (e.g., whether to have
separate capability registers or to extend general-purpose registers to also optionally hold ca-
pabilities), but also be applied to other RISC (and CISC) ISAs. This should allow reasonable
source-level software portability (leaving aside language runtime and OS assembly code, and
compiler code generation) across the CHERI model implemented in different architectures – in
much the same way that conventional OS and application C code, as well as APIs for virtual
memory, are moderately portable across underlying ISAs.

The CHERI-MIPS ISA is described in Chapters 3, 4, and 5. Chapter 6 proposes short
sketches of how the CHERI protection model might be implemented in the RISC-V and x86-
64 ISAs. Chapter 7 explores the degree to which various aspects of the CHERI model are
separable, as well as how they compose. Chapter 8 provides a more detailed exploration of
the rationale of various design choices in CHERI-MIPS, many of which apply to potential
integrations with other instruction sets.

1.4 CHERI ISA Version History
A complete version history, including detailed notes on instruction-set changes, can be found
in Appendix A. A short summary of key ISA versions is presented here:

CHERI ISAv1 - 1.0–1.4 - 2010–2012 Early versions of the CHERI ISA explored the integra-
tion of capability registers and tagged memory – first in isolation from, and later in com-
position with, MMU-based virtual memory. CHERI-MIPS instructions were targeted
only by an extended assembler, with an initial microkernel (“Deimos”) able to create
compartments on bare metal, isolating small programs from one another. Key early de-
sign choices included:

• to compose with the virtual-memory mechanism by being an in-address-space pro-
tection feature, supporting complete MMU-based OSes,

• to use capabilities to implement code and data pointers for C-language TCBs, pro-
viding reference-oriented, fine-grained memory protection and control-flow integrity,

• to impose capability-oriented monotonic non-increase on pointers to prevent privi-
lege escalation,

• to target capabilities with the compiler using explicit capability instructions (includ-
ing load, store, and jumping/branching),

• to derive bounds on capabilities from existing code and data-structure properties,
OS policy, and the heap and stack allocators,

• to have both in-register and in-memory capability storage,

• to use a separate capability register file (to be consistent with the MIPS coprocessor
extension model),

• to employ tagged memory to preserve capability integrity and provenance outside
of capability registers,
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• to enforce monotonicity through constrained manipulation instructions,

• to provide software-defined (sealed) capabilities including a “sealed” bit, user-defined
permissions, and object types,

• to support legacy integer pointers via a Default Data Capability (DDC),

• to extend the program counter (PC) to be the Program-Counter Capability (PCC),

• to support not just fine-grained memory protection, but also higher-level protection
models such as software compartmentalization or language-based encapsulation.

CHERI ISAv2 - 1.5 - August 2012 This version of the CHERI ISA developed a number of
aspects of capabilities to better support C-language semantics, such as introducing tags
on capability registers to support capability-oblivious memory copying, as well as im-
provements to support MMU-based operating systems.

UCAM-CL-TR-850 - 1.9 - June 2014 This technical report accompanied publication of our
ISCA 2014 paper on CHERI memory protection. Changes from CHERI ISAv2 were sig-
nificant, supporting a complete conventional OS (CheriBSD) and compiler suite (CHERI
Clang/LLVM), a defined CCall/CReturn mechanism for software-defined object ca-
pabilities, capability-based load-linked/store-conditional instructions to support multi-
threaded software, exception-handling improvements such as a CP2 cause register, new
instructions CToPtr and CFromPtr to improve compiler efficiency for hybrid compila-
tion, and changes relating to object capabilities, such as user-defined permission bits and
instructions to check permissions/types.

CHERI ISAv3 - 1.10 - September 2014 CHERI ISAv3 further converges C-language point-
ers and capabilities, improves exception-handling behavior, and continues to mature sup-
port for object capabilities. A key change is shifting from C-language pointers being
represented by the base of a capability to having an independent “offset” (implemented
as a “cursor”) so that monotonicity is imposed only on bounds, and not on the pointer
itself. Pointers are allowed to move outside of their defined bounds, but can be deref-
erenced only within them. There is also a new instruction for C-language pointer com-
parison (CPtrCmp), and a NULL capability has been defined as having an in-memory
representation of all zeroes without a tag, ensuring that BSS operates without change.
The offset behavior is also propagated into code capabilities, changing the behavior of
PCC, EPCC, CJR, CJALR, and several aspects of exception handling. The sealed bit was
moved out of the permission mask to be a stand-alone bit in the capability, and we went
from independent CSealCode and CSealData instructions to a single CSeal instruc-
tion, and the CSetType instruction has been removed. While the object type originates
as a virtual address in an authorizing capability, that interpretation is not mandatory due
to use of a separate hardware-defined permission for sealing.

UCAM-CL-TR-864 - 1.11 - January 2015 This technical report refines CHERI ISAv3’s con-
vergence of C-language pointers and capabilities; for example, it adds a CIncOffset

instruction that avoids read-modify-write accesses to adjust the offset field, as well as
exception-handling improvements. TLB permission bits relating to capabilities now
have modified semantics: if the load-capability bit is not present, than capability tags
are stripped on capability loads from a page, whereas capability stores trigger an excep-
tion, reflecting the practical semantics found most useful in our CheriBSD prototype.
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CHERI ISAv4 / UCAM-CL-TR-876 - 1.15 - November 2015 This technical report describes
CHERI ISAv4, introducing concepts required to support 128-bit compressed capabilities.
A new CSetBounds instruction is added, allowing adjustments to both lower and upper
bounds to be simultaneously exposed to the hardware, providing more information when
making compression choices. Various instruction definitions were updated for the poten-
tial for imprecision in bounds. New chapters were added on the protection model, and
how CHERI features compose to provide stronger overall protection for secure software.
Fast register-clearing instructions are added to accelerate domain switches. A full set of
capability-based load-linked, store-conditional instructions are added, to better support
multi-threaded pure-capability programs.

CHERI ISAv5 / UCAM-CL-TR-891 - 1.18 - June 2016 CHERI ISAv5 primarily serves to in-
troduce the CHERI-128 compressed capability model, which supersedes prior candidate
models. A new instruction, CGetPCCSetOffset, allows jump targets to be more effi-
ciently calculated relative to the current PCC. The previous multiple privileged capability
permissions authorizing access to exception-handling state has been reduced down to a
single system privilege to reduce bit consumption in capabilities, but also to recognize
their effective non-independence. In order to reduce code-generation overhead, immedi-
ates to capability-relative loads and stores are now scaled.

1.5 Changes in CHERI ISAv6 - 1.20
This version of the CHERI ISA, CHERI ISAv6, has been prepared for publication as University
of Cambridge technical report UCAM-CL-TR-907:

• Chapter 1 has been substantially reformulated, providing brief introductions to both the
CHERI protection model and CHERI-MIPS ISA, with much remaining content on our
research methodology now shifted to its own new chapter, Chapter 10. Our architec-
tural and application-level least-privilege motivations are now more clearly described, as
well as hybrid aspects of the CHERI approach. Throughout, better distinction is made
between the CHERI protection model and the CHERI-MIPS ISA, which is a specific in-
stantiation of the model with respect to 64-bit MIPS. The research methodology chapter
now provides a discussion of our overall approach, more detailed descriptions of vari-
ous phases of our research and development cycle, and describes major transitions in our
approach as the project proceeded.

• Chapter 2 on the software-facing CHERI protection model has been improved to pro-
vide more clear explanations of our approach as well as additional illustrations. The
chapter now more clearly enunciates two guiding principles underlying the CHERI ISA
design: the principle of least privilege, and the principle of intentional use. The former
has been widely considered in the security literature, and motivates privilege reduction
in the CHERI ISA. The latter has not been previously described, and supports the use of
explicitly named rights (rather than implicitly selected ones), wherever possible in order
to avoid ‘confused deputy’ problems. Both contribute to vulnerability mitigation effects.
New sections have been added on revocation and garbage collection. The role and im-
plementation of monotonicity (and also non-monotonicity) in the ISA are more clearly
described.
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• Chapter 6 has been added, describing how the CHERI protection model might be intro-
duced in the RISC-V and x86-64 ISAs. In doing so, we identify a number of key aspects
of the CHERI model that are required regardless of the underlying ISA. We argue that
the CHERI protection model is a portable model that can be implemented consistently
across a broad range of underlying ISAs and concrete integrations with those ISAs. One
implication of this argument is that portable CHERI-aware software can be implemented
across underlying architectural implementations.

• Chapter 4 now describes, at a high level, CHERI’s expectations for tagged memory.

• In general, we now prefer the phrase “control-flow robustness” to “control-flow integrity”
when talking about capability protection for code pointers, in order to avoid confusion
with conventional CFI.

• The descriptions of software-defined aspects of the CCall and CReturn instructions
have been removed from the description and pseudocode of each instruction. They are
instead part of an expanded set of notes on potential software use for these instructions.

• A new CCall selector 1 has been added that provides a jump-like domain transition
without use of an architectural exception. In this mode of operation, CCall unseals
the sealed code and data capabilities to enter the new domain, offering a different set
of hardware and software tradeoffs from the existing selector-0 semantics. For exam-
ple, complex exception-related mechanism is avoided in hardware for domain switches,
with the potential to substantially improve performance. Software would most likely use
this mechanism to branch into a trusted intermediary capability of supporting safe and
controlled switching to a new object.

• To support the new CCall selector 1, a new permission, Permit CCall is defined autho-
rizing use of the selector on sealed capabilities. The permission must be present on both
sealed code and data capabilities.

• To support the new CCall selector 1, a new CP2 exception cause code, Permit CCall
Violation, is defined to report a lack of the Permit CCall permission on sealed code or
data capabilities passed to CCall.

• New experimental instructions CBuildCap (import a capability), CCopyType (import
the otype field of a capability), and CCSeal (conditionally seal a capability) have been
added to the ISA to be used when re-internalizing capabilities that have been written to
non-capability-aware memory or storage. This instruction is intended to satisfy use cases
such as swapping to disk, migrating processes, migrating virtual machines, and run-time
linking. A suitable authorizing capability is required in order to restore the tag. As these
instructions are considered experimental, they are documented in Appendix C rather than
the main specification.

• The CGetType instruction now returns−1 when used on an unsealed capability, in order
to allow it to be more easily used with CCSeal.

• Two new conditional-move instructions are added to the CHERI-MIPS ISA: CMOVN (con-
ditionally move capability on non-zero), and CMOVZ (conditionally move capability on
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zero). These complement existing conditional-move instructions in the 64-bit MIPS ISA,
allowing more efficient generated code.

• The CJR (capability jump register) and CJALR (capability jump and link register) have
been changed to accept non-global capability jump targets.

• The CLC (capability load capability) and CLLC (capability load-linked conditional) in-
structions will now strip loaded tags, rather than throwing an exception, if the Per-
mit Load Capability permission is not present.

• The CToPtr (capability to pointer) instruction now checks that the source register is not
sealed, and performs comparative range checks of the two source capabilities. More de-
tailed rationale has been provided for the design of the CToPtr instruction in Chapter 8.

• The pseudocode for the CCheckType (capability check type) instruction has been cor-
rected to test uperm as well as perm. The pseudocode for CCheckType has been cor-
rected to test the sealed bit on both source capabilities. An encoding error for CCheckType
in the ISA quick reference has been corrected.

• The pseudocode for the CGetPerm (capability get permissions) instruction has been up-
dated to match syntax used in the CGetType and CGetCause instructions.

• The pseudocode for the CUnseal (capability unseal) instruction has been corrected to
avoid an aliasing problem when the source and destination register are the same.

• The description of the CSeal (capability seal) instruction has been clarified to explain
that precision cannot be lost in the case where bounds are no longer precisely repre-
sentable, as an exception will be thrown.

• The description of the fast representability check for compressed capabilities has been
improved.

• CHERI-related exception handling behavior is now clarified with respect to the MIPS
EXL status bit, with the aim of ensuring consistent behavior. Regardless of bounds set
on KCC, a suitable offset is selected so that the standard MIPS exception vector will be
executed via the exception PCC.

• The section in Chapter 4 on CHERI control over system privilege has been clarified to
more specifically identify 64-bit MIPS privileged instructions, KSU bits, and general
operation modified by the Access System Registers permission. The section now also
more specifically described privileged behaviors not controlled by the permission, such
as use of specific exception vectors. A corresponding rationale section has been added to
Chapter 8.

• A number of potential future instruction-set improvements relating to capability com-
pression, control flow, and instruction variants with immediates have been added to the
future ISA changes list in Chapter 4.

• Opcode-space reservations for the previously removed CIncBase and CSetLen instruc-
tions have also been removed.
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• C25, which had its hard-coded ISA use removed in CHERI ISAv5, has now been made
a caller-save capability register in the ABI.

• Citations to further CHERI research publications have been added.

1.6 Document Structure
This document is an introduction to, and a reference manual for, the CHERI instruction-set
architecture.

Chapter 1 introduces the CHERI protection model and CHERI-MIPS ISA.

Chapter 2 describes the high-level model for the CHERI approach in terms of ISA features,
software protection objectives, and software mechanism.

Chapter 3 provides a detailed description of the CHERI-MIPS architecture, including its regis-
ter and memory capability models, new instructions, procedure capabilities, and use of message-
passing primitives.

Chapter 4 describes the CHERI-MIPS capability coprocessor, its register file, tagged memory,
and other ISA-related semantics with respect to a mapping of the CHERI protection model into
the 64-bit MIPS ISA.

Chapter 5 provides a detailed description of each new CHERI-MIPS instruction, its pseudo-
operations, and how compilers should handle floating-point loads and stores via capabilities.

Chapter 6 presents high-level sketches of how the CHERI protection model might be mapped
into two other ISAs: RISC-V, and x86-64.

Chapter 7 explores the composition of CHERI’s architectural protection features and their im-
pact on software protection models.

Chapter 8 discusses the design rationale for many aspects of the CHERI-MIPS ISA, as well as
our thoughts on future refinements based on lessons learned to date. A broader document on
our use of formal methods relating to the CHERI total-system architecture is in draft form [77].

Chapter 9 briefly describes how we have used formal methodology to ensure correctness of
aspects of the CHERI ISA.

Chapter 10 describes the motivations and hardware-software co-design research approach taken
in developing CHERI, including major phases of the research.

Chapter 11 describes the historical context for this work, including past systems that have
influenced our approach.

Chapter 12 discusses our short- and long-term plans for the CHERI protection model and
CHERI-MIPS ISA, considering both our specific plans and open research questions that must
be answered as we proceed.

Appendix A provides a more detailed version history of the CHERI protection model and
CHERI-MIPS ISA.

Appendix B is a quick reference for CHERI-MIPS instructions and encodings, both current and
proposed.
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Appendix C specifies a number of CHERI-MIPS instructions that we still consider experimen-
tal, and hence do not include in the main specification.

The report also includes a Glossary defining many key CHERI-related terms.

Future versions of this document will continue to expand our consideration of the CHERI
model and CHERI-MIPS instruction-set architecture, its impact on software, and evaluation
strategies and results. Additional information on our prototype CHERI hardware and software
implementations, as well as formal methods work, can be found in accompanying reports.

1.7 Publications
As our approach has evolved, and project developed, we have published a number of papers
and reports describing aspects of the work. Our conference papers contain greater detail on
the rationale for various aspects of our hardware-software approach, along with evaluations of
micro-architectural impact, software performance, compatibility, and security:

• In the International Symposium on Computer Architecture (ISCA 2014), we published
The CHERI Capability Model: Revisiting RISC in an Age of Risk [121]. This paper
describes our architectural and micro-architectural approaches with respect to capability
registers and tagged memory, hybridization with a conventional Memory Management
Unit (MMU), and our high-level software compatibility strategy with respect to operating
systems.

• In the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2015), we published Beyond the PDP-11: Architec-
tural support for a memory-safe C abstract machine [14], which extends our architectural
approach to better support convergence of pointers and capabilities, as well as to further
explore the C-language compatibility and performance impacts of CHERI in larger soft-
ware corpora.

• In the IEEE Symposium on Security and Privacy (IEEE S&P, or “Oakland”, 2015), we
published CHERI: A Hybrid Capability-System Architecture for Scalable Software Com-
partmentalization [118], which describes a hardware-software architecture for mapping
compartmentalized software into the CHERI capability model, as well as extends our
explanation of hybrid operating-system support for CHERI.

• In the ACM Conference on Computer and Communications Security (CCS 2015), we
published Clean Application Compartmentalization with SOAAP [36], which describes
our higher-level design approach to software compartmentalization as a a form of vul-
nerability mitigation, including static and dynamic analysis techniques to validate the
performance and effectiveness of compartmentalization.

• In the ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI 2016), we published Into the depths of C: elaborating the de facto stan-
dards [62], which develops a formal semantics for the C programming language. As part
of that investigation, we explore the effect of CHERI on C semantics, which led us to
refine a number of aspects of CHERI code generation, as well as refine the CHERI ISA.
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• In the September-October 2017 issue of IEEE Micro, we published Fast Protection-
Domain Crossing in the CHERI Capability-System Architecture [115], expanding on ar-
chitectural and microarchitectural aspects of the CHERI object-capability compartmen-
talization model described in our Oakland 2015 paper.

• In the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2017), we published CHERI-JNI: Sinking the Java se-
curity model into the C [13]. This paper describes how to use CHERI memory safety and
compartmentalization to isolate Java Native Interface (JNI) code from the Java Virtual
Machine, imposing the Java memory and security model on native code.

• In the MIT Press book, New Solutions for Cybersecurity, we published two chapters on
CHERI. Balancing Disruption and Deployability in the CHERI Instruction-Set Archi-
tecture (ISA) discusses our research and development approach, and how CHERI hy-
bridizes conventional architecture, microarchitecture, operating systems, programming
languages, and general-purpose software designs with a capability-system model [109].
Fundamental Trustworthiness Principles in CHERI discusses how CHERI fulfils a num-
ber of critical trustworthiness principles [73].

We have additionally released several technical reports, including this document, describ-
ing our approach and prototypes. Each has had multiple versions reflecting evolution of our
approach:

• This report, the Capability Hardware Enhanced RISC Instructions: CHERI Instruction-
Set Architecture [110, 111, 113, 114, 112], describes the CHERI ISA, both as a high-
level, software-facing model and the specific mapping into the 64-bit MIPS instruction
set. Successive versions have introduced improved C-language support, support for scal-
able compartmentalization, and compressed capabilities.

• The Capability Hardware Enhanced RISC Instructions: CHERI Programmer’s Guide [108]
describes in greater detail our mapping of software into instruction-set primitives in both
the compiler and operating system; earlier versions of the document were released as the
Capability Hardware Enhanced RISC Instructions: CHERI User’s Guide [106].

• The Bluespec Extensible RISC Implementation: BERI Hardware Reference [116, 117]
describes hardware aspects of our prototyping platform, including physical platform and
practical user concerns.

• The Bluespec Extensible RISC Implementation: BERI Software Reference [105, 107]
describes non-CHERI-specific software aspects of our prototyping platform, including
software build and practical user concerns.

• The technical report, Clean application compartmentalization with SOAAP (extended
version) [35], provides a more detailed accounting of the impact of software compart-
mentalization on software structure and security using conventional designs, with poten-
tial applicability to CHERI-based designs as well.

The following technical reports are PhD dissertations that describe both CHERI and our
path to our current design:
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• Robert Watson’s PhD dissertation, New approaches to operating system security ex-
tensibility, describes the operating-system access-control and compartmentalization ap-
proaches, including Capsicum, which motivated our work on CHERI [101, 102].

• Jonathan Woodruff’s PhD dissertation, CHERI: A RISC capability machine for practical
memory safety, describes our CHERI1 prototype implementation [122].

• Robert Norton’s PhD dissertation, Hardware support for compartmentalisation, describes
how hardware support is provided for optimized domain transition using the CHERI2
prototype implementation [78].

As our research proceeded, and prior to our conference and journal articles, we published a
number of workshop papers laying out early aspects of our approach:

• Our philosophy in revisiting of capability-based approaches is described in Capabilities
Revisited: A Holistic Approach to Bottom-to-Top Assurance of Trustworthy Systems, pub-
lished at the Layered Assurance Workshop (LAW 2010) [76], shortly after the inception
of the project.

• Mid-way through creation of both the BERI prototyping platform, and CHERI protection
model and CHERI-MIPS ISA, we published CHERI: A Research Platform Deconflating
Hardware Virtualization and Protection at the Workshop on Runtime Environments, Sys-
tems, Layering and Virtualized Environments (RESoLVE 2012) [119].

• Jonathan Woodruff, whose PhD dissertation describes our initial CHERI prototype, pub-
lished a workshop paper on this work at the CEUR Workshop’s Doctoral Symposium
on Engineering Secure Software and Systems (ESSoS 2013): Memory Segmentation to
Support Secure Applications [76].

Further research publications and technical reports will be forthcoming.
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Chapter 2

The CHERI Protection Model

This chapter describes the protection model provided by the CHERI architecture, its use in soft-
ware, and its impact on potential vulnerabilities. There are many potential concrete mappings
of this protection model into an Instruction-Set Architecture (ISA), including the CHERI-MIPS
instantiation described in this specification (Chapters 3, 4, and 5), as well as non-MIPS archi-
tectures for which we provide high-level sketches (Chapter 6). This chapter focuses on the
structure and software-visible aims of the model, leaving specific concrete mappings to later
chapters. Whether used for memory protection or compartmentalization, CHERI’s protection
properties should hold with relative uniformity across underlying architectural implementations
(e.g., regardless of capability size, whether capabilities are stored in their own register file or as
extensions to general-purpose integer registers, etc.), and should support common (and ideally
portable) programming models and approaches.

2.1 Underlying Principles
The design of CHERI is influenced by two broad underlying principles that are as much philo-
sophical as architectural, but are key to all aspects of the design:

The principle of least privilege It should be possible to express and enforce a design in which
each program component can execute with only the privileges it requires to perform its
function. This is expressed in terms of architectural privileges (e.g., by allowing re-
strictions to be imposed in terms of bounds, permissions, etc., encapsulating a software-
selected but hardware-defined set of rights) and at higher levels of abstraction in software
(e.g., by allowing sealed capabilities to refer to encapsulated code and data incorporating
both a software-selected and software-defined set of rights). This principle has a long
history in the research literature, and has been explored (with varying degrees of gran-
ularity) both in terms of the expression of reduced privilege (i.e., through isolation and
compartmentalization) and the selection of those privileges (e.g., through hand separa-
tion, automated analysis, and so on).

The principle of intentional use When multiple rights are available to a program, the selec-
tion of rights used to authorize work on behalf of the program shall be explicit, rather
than implicit in the architecture or another layer of software abstraction. The effect of
this principle is to avoid the accidental or unintended exercise of rights that could lead
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to a violation of the intended policy. It counters what is classically known as ‘confused
deputy’ problems, in which a program will unintentionally exercise a privilege that it
holds legitimately, but on behalf of another program that does not (and should not) exer-
cise that privilege [38]. This principle, common to many capability systems but usually
not explicitly stated, has been applied throughout the CHERI design, from architectural
privileges (e.g., the requirement to explicitly identify capability registers used for load
or store) through to the sealed capability mechanism that can be used to support object-
capability models such as found in CheriBSD.

These principles, which offer substantial mitigating properties in the presence of software vul-
nerabilities or malicious code, guide the integration of a capability-system model with the
general-purpose instruction set – and its exposure in the software model. A more detailed
exploration of the design principles embodied in and supported by CHERI can be found in
Fundamental Trustworthiness Principles in CHERI [73].

2.2 CHERI Capabilities: Strong Protection for Pointers
The purpose of the CHERI ISA extensions is to provide strong protection for pointers within
virtual address spaces, complementing existing virtual memory provided by Memory Manage-
ment Units (MMUs). These protections apply to the storage and manipulation of pointers, and
also accesses performed via pointers. The rationale for this approach is two-fold:

1. A large number of vulnerabilities in Trusted Computing Bases (TCBs), and many of the
application exploit techniques, arise out of bugs involving pointer manipulation, corrup-
tion, and use. These occur in several ways, with bugs such as those permitting attackers
to coerce arbitrary integer values into dereferenced pointers, or leading to undesirable
arithmetic manipulation of pointers or buffer bounds. These can have a broad variety of
impacts – including overwriting or leaking sensitive data or program metadata, injection
of malicious code, and attacks on program control flow, which in turn allow attacker
privilege escalation.

Virtual memory fails to address these problems as (a) it is concerned with protecting data
mapped at virtual addresses rather than being sensitive to the context in which a pointer
is used to reference the address – and hence fails to assist with misuse of pointers; and
(b) it fails to provide adequate granularity, being limited to page granularity – or even
more coarse-grained “large pages” as physical memory sizes grow.

2. Strong integrity protection, fine-grained bounds checking, encapsulation, and monotonic-
ity for pointers can be used to construct efficient isolation and controlled communication,
foundations on which we can build scalable and programmer-friendly compartmentaliza-
tion within address spaces. This facilitates deploying fine-grained application sandbox-
ing with greater ubiquity, in turn mitigating a broad range of logical programming errors
higher in the software stack, as well as resisting future undiscovered vulnerability classes
and exploit techniques.

Virtual memory also fails to address these problems, as (a) it scales poorly, paying a high
performance penalty as the degree of compartmentalization grows; and (b) it offers poor
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programmability, as the medium for sharing is the virtual-memory page rather than the
pointer-based programming model used for code and data sharing within processes.

Consequently, CHERI capabilities are designed to represent language-level pointers with
additional metadata to protect their integrity and provenance, enforce bounds checks and per-
missions (and their monotonicity), and hold additional fields supporting opaque (software-
defined) pointers suitable to to implement higher-level protection models such as separation
and efficient compartmentalization. Unlike virtual memory, whose functions are intended to be
managed by low-level operating-system components such as kernels, hypervisors, and system
libraries, CHERI capabilities are targeted at compiler and language-runtime use, allowing pro-
gram structure and dynamic memory allocation to direct their use. We anticipate CHERI being
used within operating-system kernels, and also in userspace libraries and applications, for the
purposes of both memory protection and compartmentalization.

Significant attention has gone into providing strong compatibility with the C and C++ pro-
gramming languages, widely used in off-the-shelf TCBs such as OS kernels and language run-
times, and also with conventional MMUs and virtual-memory models – which see wide use
today and continue to operate on CHERI-enabled systems. This is possible by virtue of CHERI
having a hybrid capability model that securely composes a capability-system model with con-
ventional architectural features and language interpretation. CHERI is designed to support
incremental migration via selective recompilation (e.g., transforming pointers into capabilities,
as discussed below). It provides several possible strategies for selectively deploying changes
into larger code bases – constructively trading off source-code compatibility, binary compati-
bility, performance, and protection.

Most source code can be recompiled to employ CHERI capabilities transparently by virtue
of existing pointer syntax and semantics, which the compiler can map into capability use just as
it currently maps that functionality into integer virtual-address use. Code in which all pointers
(and implied virtual addresses) are implemented solely using capabilities is referred to as pure-
capability code. Capability use can also be driven selectively, albeit less transparently, through
annotation of C pointers and types to indicate that hybrid capability code generation should
be used when operating on those pointers – referred to as hybrid-capability code. It is also
possible to imagine compilers making automatic policy-based decisions about capability use
on a case-by-case basis, based on trading off compatibility, performance, and protection with
only limited programmer intervention.

2.3 Architectural Capabilities

In current systems, pointers are integer values that are commonly stored in two forms archi-
tecturally: in integer registers, and in memory. Capabilities are likewise stored in registers and
memory, and contain integer values interpreted as virtual addresses; they also contain additional
metadata to implement protection properties around pointers, such as bounds. Capabilities are
therefore larger than the virtual addresses they protect – typically between 2× (e.g., 128-bit
compressed capabilities on a 64-bit architecture) and 4× (e.g., 256-bit uncompressed capabili-
ties on a 64-bit architecture). The majority of the capability is stored in addressable memory, as
is the case for current integer pointers; however, there is also a 1-bit tag that may be inspected
via the instruction set, but is not visible via byte-wise loads and stores. In the remainder of this
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Figure 2.1: CHERI enforces strict integrity, provenance validity, monotonicity, bounds, per-
missions, and encapsulation on pointers, mitigating common vulnerabilities and exploit tech-
niques.

section, we describe the high-level protection properties and other functionality that capabilities
grant to pointers and the execution environment (see Figure 2.1):

• Capability tags for pointer integrity and provenance (Section 2.3.1)

• Capability bounds to limit the dereferenceable range of a pointer (Section 2.3.2)

• Capability permissions to limit the use of a pointer (Section 2.3.3)

• Capability monotonicity and guarded manipulation to prevent privilege escalation (Sec-
tion 2.3.4)

• Capability sealing to implement software encapsulation (Section 2.3.5)

• Capability object types to enable a software object-capability model (Section 2.3.6)

• Sealed capability invocation to implement non-monotonic domain transition (Section 2.3.7)

• Capability control flow to limit pointer propagation (Section 2.3.8)

• Capability compression to reduce the in-memory overhead of pointer metadata (Sec-
tion 2.3.9)

• Hybridization with integer pointers (Section 2.3.10)

• Hybridization with MMU-based virtual memory (Section 2.3.11)

• Hybridization with ring-based privilege (Section 2.3.12)

• Failure modes and exception delivery (Section 2.3.13)

• Capability revocation (Section 2.3.14)

These features allow capabilities to be architectural primitives upon which higher-level soft-
ware protection and security models can be constructed (see Section 2.4).
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2.3.1 Tags for Pointer Integrity and Provenance

Each capability (whether held in a register or stored in memory) has an associated 1-bit tag
that consistently tracks pointer validity. In-memory tags are maintained by the memory sub-
system as one bit for each capability-sized capability-aligned unit of memory (either 128 bits
or 256 bits, depending on the ISA variant); they are not directly addressable. Other metadata
associated with capabilities (e.g., bounds and permissions) are stored in addressable memory
and protected by the corresponding tag bits. Tags follow capabilities into and out of capability
registers with corresponding loads and stores.

Capabilities are valid for dereference – for load, store, and instruction fetch – only if the tag
is set. Dereferencing an untagged capability (i.e., one without a tag set) will cause a hardware
exception. Tagged capabilities can be constructed only by deriving them from existing tagged
capabilities, which ensures pointer provenance (Figure 2.1). Attempts to overwrite all or a por-
tion of a capability in memory will automatically (and atomically) clear the tag. For example,
this prevents arbitrary data received over the network from ever being directly dereferenced as
a pointer.

Implementing C pointers as tagged capabilities allows them to be reliably identified in
the virtual address space, which can help support techniques such as garbage collection. The
CHERI ISA has been designed to avoid leakage of virtual addresses out of tagged capabilities
(e.g., into general-purpose registers) during normal memory allocation, comparison, manipula-
tion, and dereference, to facilitate reliable detection of pointers in both registers and memory.
Virtual addresses can be extracted from capabilities – e.g., for debugging purposes – but avoid-
ing doing so in code generation supports potential use of techniques such as copying garbage
collection.

Our CHERI prototype implements tagged memory using partitioned memory, with tags
and associated capability-sized units linked and propagated by the cache hierarchy in order to
provide suitable atomicity. However, it is also possible to imagine implementations in which
DRAM or non-volatile memory is extended to store tags with capability-sized units as well
– which might be more suitable for persistent memory types where atomicity isn’t simply a
property of coherent access through the cache. We similarly assume that DMA will clear tags
when writing to memory, although it is possible to imagine future DMA implementations that
are able to propagate tags (e.g., to maintain tags on pointers in descriptor rings).

2.3.2 Bounds on Pointers

Capabilities contain lower and upper bounds for each pointer; while the pointer may move out
of bounds (and perhaps back in again), attempts to dereference an out-of-bounds pointer will
throw a hardware exception. This prevents exploitation of buffer overflows on global variables,
the heap, and the stack, as well as out-of-bounds execution. Allowing pointers to sometimes
be out-of-bounds with respect to their buffers – without faulting – is important for C-language
compatibility. The 256-bit capability variant allows pointers to stray arbitrarily out of bounds.
The 128-bit scheme imposes some restrictions as bounds compression depends on redundancy
between the pointer and bounds, which may not be present if the pointer is substantially outside
of its bounds (see Section 4.11 for details).

Bounds originate in allocation events. The operating system places bounds on pointers to
initial address-space allocations during process startup (e.g., via the initial register file, and ELF
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auxiliary arguments), and on an ongoing basis as new address-space mappings are made avail-
able (e.g., via mmap system calls). Most bounds originate in the userspace language runtime or
compiler-generated code, including the run-time linker for function pointers and global data,
the heap allocator for pointers to heap allocations, and generated code for pointers taken to
stack allocations. Programming languages may also offer explicit subsetting support to allow
software to impose its own expectations on suitable bounds for memory accesses to complex
objects (such as in-memory video streams) or in their own memory allocators.

2.3.3 Permissions on Pointers

Capabilities extend each pointer with a permissions mask controlling how the pointer may be
used; for example, the run-time linker or compiler may set the permissions so that pointers
to data cannot be reused as code pointers, or so that pointers to code cannot be used to store
data. Further permissions control the ability to load and store capabilities themselves, allowing
the compiler to implement policies such as dereferenceable code and data pointers cannot be
loaded from character strings. Permissions can also be made accessible to higher-level aspects
of the run-time and programmer model, offering dynamic enforcement of concepts similar to
const.1 Languages may provide further facilities to allow programmer-directed refinement of
permissions – for example, for use in Just-in-Time (JIT) compilers.

Permissions changes, as with bounds setting, are often linked to allocation events. Per-
missions on capabilities for initial memory memory mappings will be introduced by the ker-
nel during process startup; further capabilities returned for new mappings will also have their
permissions restricted based on intended use. Executable capabilities representing function
pointers and return addresses will be refined by the run-time linker. Read-only and read-write
capabilities referring to data will be refined by the run-time linker, heap allocator, and stack
allocator.

Permissions also control access to the sealing facility used for encapsulation (see Sec-
tion 2.3.5). While sealing permission could be granted with all data and code capabilities, best
practice in privilege minimization suggests that a separate hierarchy of sealing pointers should
be maintained instead. Returning independent sealing capabilities via a dedicated system-call
interface reduces opportunities for arbitrary code and data capabilities being used improperly
for this purpose.

2.3.4 Capability Monotonicity via Guarded Manipulation

Capability monotonicity ensures that new capabilities must be derived from existing capabil-
ities only via valid manipulations that may narrow (but never broaden) rights ascribed to the
original capability. This property prevents broadening the bounds on pointers, increasing the
permissions on pointers, and so on, eliminating many manipulation attacks and inappropri-
ate pointer reuses. CHERI enforces capability monotonicity across the vast majority of its
instructions by virtue of guarded manipulation: they cannot represent non-monotonic transfor-
mations. For example, permissions on capabilities are modified using a bitwise ‘and’ operation,
and hence cannot express an increase in permissions. Similarly, the bound-setting instruction

1The C-language const qualifier conflates several orthogonal properties and thus can not be enforced auto-
matically. Our language extensions include more constrained __input and __output qualifiers.

34



will throw an exception (or clear the tag) rather than allow the bounds be increased on a ca-
pability. Tagged memory ensures that attempts to directly modify these capability fields in
memory clear the tag, causing later attempts to dereference the capability to fail. As a result
of these combined architectural features, the guarded manipulation implementing capability
monotonicity is non-bypassable.

Monotonicity allows reasoning about the set of reachable rights for executing code, as they
are limited to the rights in any capability registers, and inductively, the set of any rights reach-
able from those capabilities – but no other rights, which would require a violation of mono-
tonicity. Monotonicity is a key foundation for fine-grained compartmentalization, as it prevents
delegated rights from being used to gain access to other undelegated areas of memory. More
broadly, monotonicity reinforces implementation of the principle of intentional use, in that ca-
pabilities not only cannot be used for operations beyond those for which they are authorized,
but also cannot inadvertently be converted into capabilities describing more broad rights.

The two notable exceptions to capability monotonicity are invocation of sealed capabilities
(see Section 2.3.7) and exception delivery (see Section 2.3.13). Where non-monotonicity is
present, control is transferred to code trusted to utilize a gain in rights appropriately – for exam-
ple, a trusted message-passing routine in the userspace runtime, or an OS-provided exception
handler. This non-monotonicity is required to support protection-domain transition from one
domain holding a limited set of rights to destination domain that holds rights unavailable to the
originating domain – and is therefore also a requirement for fine-grained compartmentalization
(see Section 2.4.3).

2.3.5 Sealed Capabilities
Capability sealing allows capabilities to be marked as immutable and non-dereferenceable,
causing hardware exceptions to be thrown if attempts are made to modify or dereference them
(including jumping to them). This enables capabilities to be used as unforgeable tokens of
authority for higher-level software constructs grounded in encapsulation, while still allow-
ing them to fit within the pointer-centric framework offered by CHERI capabilities. Sealed
capabilities are the foundation for building the CheriBSD object-capability model supporting
in-address-space compartmentalization, where pairs of sealed code and data capabilities are ob-
ject references whose invocation triggers a protection-domain switch. Sealed capabilities can
also be used to support other operating-system or language robustness features, such as rep-
resenting other sorts of delegated (non-hardware-defined) rights, or ensuring that pointers are
dereferenced only by suitable code (e.g., in support of language-level memory or type safety).

2.3.6 Capability Object Types
Sealed capabilities contain an additional piece of metadata, an object type, set when a memory
capability undergoes sealing. Object types allow multiple sealed capabilities to be indelibly
(and indivisibly) linked, so that the kernel or language runtime can avoid expensive checks
(e.g., via table lookups) to confirm that they are intended to be used together. For example, for
object-oriented compartmentalization models (such as the CheriBSD object-capability model),
pairs of sealed capabilities represent objects: one as the code capability for a class, and the
other a data capability representing the data associated with a particular instance of an object.
In the CheriBSD model, these two sealed capabilities have the same value in their object-type
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field, and two candidate capabilities passed to object invocation will not be accepted together
if their object types do not match.

The object-type field is set when a capabilitity is sealed based on a second input capability
authorizing use of the type space – itself simply a capability permission authorizing sealing
within a range of values specified by the capability’s bounds. A similar model authorizes
unsealing, which permits a sealed capability to be restored to a mutable and dereferenceable
state – if a suitable capability to have sealed it is held. This is used in the CheriBSD model
during object invocation to grant the callee access to its internal state.

A similar model could be achieved without using an unsealing mechanism: a suitably privi-
leged component could inspect a sealed capability and rederive its unsealed contents. However,
authorizing both sealing and unsealing based on type capabilities allows the right to construct
encapsulated pointers to be delegated, without requiring recourse to a privileged software su-
pervisor at the cost of additional domain transitions – or exercise of unnecessary privilege.

2.3.7 Sealed Capability Invocation
CHERI supports two forms of non-monotonicity: jump-like capability invocation, and excep-
tion handling (see Section 2.3.13). In CHERI-MIPS, the CCall instruction (optionally paired
with use of the CReturn instruction) accepts a pair of sealed capability operands on which var-
ious checks are performed (for example, that they are valid, sealed, and that their object types
match). If all tests are passed, then additional capabilities become available to the executing
CPU context – either by virtue of unsealing of the operand registers (jump-like CCall) or to
the exception handler (exception-based CCall).

For both models, the destination execution environment has well-defined and reliable prop-
erties, such as a controlled target program-counter capability and additional data capability that
can be used to authorize domain transition. The jump-like model avoids the microarchitectural
overhead of exception delivery, behaving much like a conventional jump to register, permitting
an in-address-space domain switch without changing rings.

In both cases, the newly executing code has the ability to further manipulate execution state,
and impose semantics such as call-return secure function invocation (CheriBSD) or secure
asynchronous message passing (microkernel), which will likely be followed by a privilege de-
escalation as a target domain is entered (see Section 2.4.3).

2.3.8 Capability Flow Control
The CHERI capability model is intended to model pointers: tagged memory allows capabilities
to be stored in memory, and in particular, embedded within software-managed data structures
such as objects or the stack. CHERI is therefore particularly subject to a historic criticism
of capability-system models – namely, that capability propagation makes it difficult to track
down and revoke rights (or to garbage collect them). To address this concern, CHERI has three
mechanisms by which the flow of capabilities can be constrained:

Capability TLB bits extend the existing load and store permissions on TLB entries (or, in ar-
chitectures with hardware page-table walkers, page-table entries) with new permissions
to authorize loading and storing of capabilities. This allows the operating system to
maintain pages from which tagged capabilities cannot be loaded (tags will be transpar-
ently stripped on load), and to which capabilities cannot be stored (a hardware exception
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will be thrown). This can be used, for example, to prevent tagged capabilities from be-
ing stored in memory-mapped file pages (as the underlying object might not support tag
storage), or to create regions of shared memory through which capabilities cannot flow.

Capability load and store permission bits extend the load and store permissions on capabil-
ities themselves, similarly allowing a capability to be used only for data access – if suit-
ably configured. This can be used to create regions of shared memory within a virtual
address space through which capabilities cannot flow. For example, it can prevent two
separated compartments from delegating access to one another’s memory regions, instead
limiting communication to data traffic via the single shared region.

Capability control-flow permissions “color” capabilities to limit propagation of specific types
of capabilities via other capabilities. This feature marks capabilities as global or local to
indicate how they can be propagated. Global capabilities can be stored via any capabil-
ity authorized for capability store. Local capabilities can be stored only via a capability
specifically authorized as store local. This can be used, for example, to prevent propa-
gation of temporally sensitive stack memory between compartments, while still allowing
garbage-collected heap memory references to be shared.

This feature remains under development, as we hope to generalize it to further uses such
as limiting the propagation of ephemeral DRAM references in persistent-memory sys-
tems. However, it is used successfully in the CheriBSD compartmentalization model to
improve memory safety and limit obligations of garbage collection.

The decision to strip tags on load, but throw an exception on store, reflects pragmatic
software utilization goals: language runtimes and system libraries often need to implement
capability-oblivious memory copying, as the programmer may not wish to specify whether a
region of memory must (or must not) contain capabilities). By stripping tags rather than throw-
ing an exception on load, a capability-oblivious memory copy is safe to use against arbitrary
virtual addresses and source capabilities – without risk of throwing an exception. Software that
wishes to copy only data from a source capability (excluding tag bits due to a non-propagation
goal) can simply remove the load-capability permission from the source capability before be-
ginning a memory copy.

On the other hand, it is often desirable to detect stripping of a capability on store via a
hardware exception, to ease debugging. For example, it is typically desirable to catch storing
a tagged capability to a file as early as possible in order to avoid debugging a later failed
dereference due to loss of a tag. Similarly, storing a tagged capability to a virtual-memory page
might be an indicator to a garbage collector that it may now be necessary to scan that page in
search of capabilities.

This design point conserves TLB and permission bits; there is some argument that complet-
ing the space (i.e., shifting to three or four bits each) would offer functional improvements – for
example, the ability to avoid exceptions on a capability-oblivious memory copy via a capability
that does not authorize capability store, or the ability to transparently strip tags on store to a
shared memory page. However, we have not yet found these particular combinations valuable
in our software experimentation,
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2.3.9 Capability Compression
The 256-bit in-memory representation of CHERI capabilities provides full accuracy for pointer
lower bounds and upper bounds, as well as a large object type space with software-defined
permissions. The 128-bit implementation of CHERI uses floating-point-like fat-pointer com-
pression techniques that rely on redundancy between the three 64-bit virtual addresses. The
compressed representation exchanges stronger alignment requirements (proportional to ob-
ject size) for a more compact representation. The CHERI-128 compression model (see Sec-
tion 4.11) maintains the monotonicity inherent in the 256-bit model: no ISA manipulation of
a capability can grant increased rights, and when unrepresentable cases are generated (e.g.,
a pointer substantially out of bounds, or a very unaligned object), the pointer becomes un-
dereferenceable. Memory allocators already implement alignment requirements for heap and
stack allocations (word, pointer, page, and superpage alignments), and these algorithms require
only minor extension to ensure fully accurate bounds for large memory allocations. (Small
allocations < 1MiB require no additional alignment.) Relative to a 64-bit pointer, the 128-bit
design reduces per-pointer memory overhead (with a strong influence on cache footprint for
some software designs) by roughly two thirds, compared to the 256-bit representation.

2.3.10 Hybridization with Integer Pointers
Processors implementing CHERI capabilities also support existing programs compiled to use
conventional integer pointers rather than capabilities, using two special capabilities:

Default Data Capability indirects and controls non-capability-based pointer-based load and
store instructions.

Program Counter Capability extends the conventional program counter with capability meta-
data, indirecting and controlling instruction fetches.

Programs compiled to use capabilities to represent pointers (whether implicitly or via ex-
plicit program annotations) will not use the default data capability, instead employing capability
registers and capability-based instructions for pointer operations and indirection. The program-
counter capability will be used regardless of the code model employed, although capability-
aware code generation will employ constrained program-counter bounds and permissions to
implement control-flow robustness rather than using a single large code segment. Support for
legacy loads and stores can be disabled by installing a sufficiently constrained (e.g., untagged)
default data capability.

Different compilation modes and ABIs provide differing levels of compatibility with exist-
ing code – but include the ability to run entirely unmodified non-CHERI binaries, to execute
non-CHERI code in sandboxes within CHERI-aware applications, and CHERI-aware code in
sandboxes within CHERI-unaware applications.

2.3.11 Hybridization with Virtual Addressing
The above features compose naturally with, and complement, the Virtual-Memory (VM) mod-
els commonly implemented using commodity Memory Management Units (MMUs) in current
OS designs (Figure 2.2). Capabilities are within rather than between address spaces; they pro-
tect programmer references to data (pointers), and are intended to be driven primarily by the
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Figure 2.2: CHERI supports a wide range of operational software models including: unmodi-
fied MMU-based RISC operating systems; hybrid operating systems utilizing the MMU to sup-
port a process model and/or virtualization while using CHERI within virtual address spaces;
and pure single-address-space CHERI-based operating systems.

compiler rather than by the operating system. In-address-space compartmentalization comple-
ments process isolation by providing fine-grained memory sharing and highly efficient domain
switching for use between compartments in the same application, rather than between inde-
pendent programs via the process model. Operating-system kernels will also be able to use
capabilities to improve the safety of their access to user memory, as user pointers cannot be
accidentally used to reference kernel memory, or accidentally access memory outside of user-
provided buffers. Finally, the operating system might choose to employ capabilities internally,
and even in its interactions with userspace, in referencing kernel data structures and objects.

2.3.12 Hybridization with Architectural Privilege
Conventional architectures employ ring-based mechanisms to control use of architectural priv-
ilege: only code executing in “supervisor” or “kernel” mode is permitted to access the virtual
address space with supervisor rights, but also to control the MMU, certain cache management
operations, interrupt-related features, system-call return, and so on. The ring model prevents
unprivileged code from manipulating the virtual address space (and other processor features)
in such a way as to bypass memory protection and isolation configured by the operating sys-
tem. Contemporary instantiations may also permit virtualization of those features, allowing
unmodified operating systems to execute efficiently over microkernels or hypervisors. CHERI
retains support for these models with one substantial modification: use of privileged features
within privileged rings, other than in accessing virtual memory as the supervisor, depends on
the program-counter capability having a suitable hardware permission set.

This feature similarly allows code within kernels, microkernels, and hypervisors to be com-
partmentalized, preventing bypass of the capability model within the kernel virtual address
space through control of virtual memory features. The feature also allows vulnerability miti-
gation by allowing only explicit use of privileged features: kernel code can be compiled and
linked so that most code executes with a program-counter capability that does not authorize use
of privilege, and only by jumping to selected program-counter capabilities can that privilege be
exercised, preventing accidental use. Finally, this feature paves the way for process and object
models in which the capability model is used without recourse to rings.
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2.3.13 Failure Modes and Exceptions
Bounds checks, permissions, monotonicity, and other properties of the CHERI protection model
inevitably introduce the possibility of new ISA-visible failure modes when software violates
rules imposed through capabilities (whether due to accident or malicious intent). In general,
in our prototyping, we have selected to deliver hardware exceptions as early as possible when
such events occur; for example, on attempts to perform disallowed load and store operations, to
broaden bounds, and so on. This allows the operating system (which in turn may delegate to the
userspace language runtime or application) the ability to catch and handle failures in various
ways – such as by emulating disallowed accesses, converting to a language-visible exception,
or performing some diagnostic or mitigation activity.

Different architectures express differing design philosophies for when exceptions may be
delivered, and there is flexibility in the CHERI model in when exceptions might be deliv-
ered. For example, while an attempt to broaden (rather than narrow) bounds could generate
an immediate exception (our prototyping choice), the operation could instead generate a non-
dereferenceable pointer as its output, in effect deferring an exception until the time of an at-
tempted load, store, or instruction fetch. The former offers slightly improved debuggability (by
exposing the error earlier), whereas the latter can offer microarchitectural benefits by reducing
the set of instructions that can throw exceptions. Both of these implementations ensure mono-
tonicity by preventing derived pointers from improperly allowing increased access following
guarded manipulation, and are accepted by the model.

2.3.14 Capability Revocation
Revocation is a key design concern in capability systems, as revocation is normally imple-
mented via table indirection – an approach in tension with the CHERI design goal of avoiding
table-based lookups or indirection on pointer operations. As described in Section 2.3.8, CHERI
provides explicit ISA-level features to constrain the flow of capabilities in order to reduce the
potential overhead in walking through memory to find outstanding capabilities to resources
(e.g., to implement garbage collection or sweeping revocation). There are also explicit features
in the instruction-set architecture that directly support the implementation of both pointer and
object-capability revocation:

MMU-based virtual-address revocation As CHERI capabilities are evaluated prior to virtual
addressing (i.e., they are pointers within address spaces), the MMU can be used not only
to maintain virtual address spaces, but also to explicitly prevent the dereferencing of
pointers to virtual address ranges – regardless of the capability mechanism. Combined
with a policy of either non-reuse of virtual address space (as distinct from non-reuse
of physical address space) or garbage collection, this allows all outstanding capabilities
(and any further capabilities derived from them) to be revoked without the need to search
for those capabilities in the register file or memory. This revocation is subject to the
granularity and scalability limitations of MMUs: for example, it is not possible to revoke
portions of the virtual address space smaller than one page.

This low-level hardware mechanism must be combined with suitable software manage-
ment of the virtual address space in order for it to be effective. For example, a policy
of non-reuse of the virtual address space at allocation time will prevent stale capabili-
ties from referring to a new allocation after an old one has been freed. A further policy
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of revoking MMU mappings for the region of virtual address space will prevent use of
the freed memory as a communications channel from the point of free. Asynchronous
and batched revocations will improve performance subject to windows of opportunity in
which use after free (but not use after re-allocation) might still be possible. It is also
worth observing explicitly that non-reuse of the virtual address space in no way implies
non-reuse of physical memory, as memory underlying revoked virtual addresses can be
safely reused. An alternative to virtual address-space non-reuse is garbage collection, in
which outstanding references to freed (and perhaps revoked) virtual address space are
sought and explicitly invalidated.

Use of the MMU for virtual address-space revocation is subject to a number of limits
depending on the non-reuse and garbage-collection policies adopted. For example, if
small, sub-page-size, tightly packed memory allocations are freed in a manner that leads
to fragmentation (i.e., both allocated and freed memory within the same virtual page),
then revocation will not be possible – as it would prevent access to valid allocations
(which could be emulated at great expense). Similarly, fragmentation of the virtual ad-
dress space may lead to greater overhead in the OS’s virtual-memory subsystem, due
to the need to maintain many individual small mappings, as well as the possibility of re-
duced opportunity to use superpages should revocations occur that are expressed in terms
of smaller page sizes.

However, overall, the MMU provides a non-bypassable means of preventing use of all
outstanding capabilities to a portion of the virtual address space, permitting strong revo-
cation to be used where appropriate.

Accurate garbage collection Traditional implementations of C are not amenable to accurate
garbage collection because unions and types such as intptr_t allow a register or mem-
ory location to contain either an integer value or a pointer. CHERI-C does not have this
limitation: The tag bit makes it possible to accurately identify all memory locations that
contain data that can be interpreted as a pointer. In addition, the value of the pointer (en-
coded in the offset) is distinct from the base and length; thus, code that stores other data
in low bits of the pointer will not affect the collector. Garbage collection is the logical
dual of revocation: garbage collection extends the lifetime of objects as long as they have
valid references, whereas revocation curtails the lifetime of references once the objects to
which they refer are no longer valid. A simple stop-the-world mark-and-sweep collector
for C can perform both tasks, scanning all reachable memory, invalidating all references
to revoked objects, and recycling unreachable memory.

More complex garbage collectors typically rely on read or write barriers (i.e., mecha-
nisms for notifying the collector that a reference has been read or written). These are
typically inserted by the compiler; however, in the context of revocation the compiler-
generated code must be treated as untrusted. It may be possible to use the permission bits
– either in capabilities themselves or in page-table entries – to introduce traps that can be
used as barriers.

Capability tags for sweeping revocation In addition to supporting garbage collection, capa-
bility tags in registers and memory also allow the reliable identification of capabilities
for the purposes of explicit revocation. Subject to safety in the presence of concurrency
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(e.g., by suspending software execution in the virtual address space, or temporarily lim-
iting access to portions of the virtual address space), software can reliably sweep through
registers and memory, clearing the tags (or otherwise replacing) for capabilities that are
to be revoked. This comes at potentially significant cost, which can be mitigated through
use of the MMU – e.g., to prevent capabilities from being used in certain pages intended
only to store data, or to track where capabilities have been stored via a capability dirty
bit in virtual-memory metadata.

Revocation of sealed capabilities When the interpretation of sealed capabilities is performed
by a trustworthy software exception handler, there is the opportunity for that exception
handler to implement revocation semantics explicitly. For example, the CCall selector
0/CReturn exception handler could interpret the virtual address of a sealed capability as
pointing to a table entry within the kernel, rather than directly encapsulating a pointer to
user memory. The address could be split into two parts: a table index, and a generation
counter. The table entry could then itself contain a generation counter. Sealed object-
capability references to the table entry would incorporate the value of the counter at the
time of sealing, and the CCall mechanism would check the generation count, rejecting
invocation on a mismatch. When object-capability revocation is desired, the table gen-
eration counter could be bumped, preventing any further use of outstanding references.
This approach would be subject to limits on table-entry reuse and the size of the table;
for example, a reasonable design might employ a 24-bit table index (permitting up to
224 objects in the system at a time) and a 40-bit generation counter. Use of the 24-bit
object-type could further increase the number of objects permissible in the system con-
currently. Many other similar schemes incorporating explicit checks for revocation based
on software interposition employing counters, tables, etc., can be imagined.

2.4 Software Protection and Security Using CHERI

The remainder of the chapter explores these ideas in greater detail, describing the high-level
semantics offered by the ISA and how they are mapped into programmer-visible constructs
such as C-language features. The description in this chapter is intended to be agnostic to
the specific Instruction-Set Architecture (ISA) in which CHERI is implemented. Whereas the
implementation described in later chapters maps into the 64-bit MIPS ISA, the overall CHERI
strategy is intended to support a variety of ISA backends, and could be implemented in the
64-bit ARMv8, SPARCv9, or RISC-V ISAs with only modest localization. In particular, it
is important that programmers be able to rely on the properties described in this chapter –
regardless of the ISA-level implementation – and that software abstractions built over these
portables have consistent behavior that can be depended upon to mitigate vulnerabilities.

2.4.1 C/C++ Language Support

CHERI has been designed so that there are clean mappings from the C and C++ programming
language into these protection properties. Unlike conventional virtual memory, the compiler
(rather than the operating system) is intended to play the primary role in managing these pro-
tections. Protection is within address spaces, whether in a conventional user process, or within
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the operating-system kernel itself in implementing its own services or in accessing user mem-
ory:

Spatial safety CHERI protections are intended to directly protect the spatial safety of userspace
types and data structures. This protection includes the integrity of pointers to code and
data, as well as implied code pointers in the form of return addresses and vtable entries;
bounds on heap and stack allocations; the prevention of executable data, and modification
of executable code via permission.

Temporal safety CHERI provides instruction-set foundations for higher-level temporal safety
properties, such as non-reuse of heap allocations via garbage collection and revocation,
and compiler clearing of return addresses on the stack.

Software compartmentalization CHERI provides hardware foundations for highly efficient
software compartmentalization, the fine-grained decomposition of larger software pack-
ages into smaller isolated components that are granted access only to the memory (and
also software-defined) resources they actually require.

Enforcing language-level properties CHERI’s software-defined permission bits and sealing
features can also be used to enforce other language-level protection objectives (e.g., opac-
ity of pointers exposed outside of their originating modules) or to implement hardware-
assisted type checking for language-level objects (e.g., to more robustly link C++ objects
with their corresponding vtables).

CHERI protections are implemented by a blend of functionality:

Compiler and linker responsible for generating code that manipulates and dereferences code
and data pointers, compile-time linkage, and also stack allocation.

Language runtime responsible for ensuring that program run-time linkage, memory alloca-
tion, and exceptions implement suitable policies in their refinement and distribution of
capabilities to the application and its libraries.

Operating-system kernel responsible for interactions with conventional virtual memory, main-
taining capability state across context switches, reporting protection failures via signals
or exceptions, and implementing domain-transition features used with compartmental-
ization.

Application program and libraries responsible for distributing and using pointers, allocat-
ing and freeing memory, and employing higher-level capability-based protection features
such as compartmentalization during software execution.

Data-Pointer Protection

Depending on the desired compilation mode, some or all data pointers will be implemented
using capabilities. We anticipate that memory allocation (whether from the stack or heap, or
via kernel memory mapping) will return capabilities whose bounds and permissions are suitable
for the allocation, which will then be maintained for any derived pointers, unless explicitly
narrowed by software. This will provide the following general classes of protections:
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Pointer integrity protection Overwriting a pointer in memory with data (e.g., received over a
socket) will not be able to construct a dereferenceable pointer.

Pointer provenance checking and monotonicity Pointers must be derived from prior point-
ers via manipulations that cannot increase the range or permissions of the pointer.

Bounds checking Pointers cannot be moved outside of their allocated range and then be deref-
erenced for load, store, or instruction fetch.

Permissions checking Pointers cannot be used for a purpose not granted by its permissions.
In as much as the kernel, compiler, and run-time linker restrict permissions, this will (for
example) prevent data pointers from being used for code execution.

Bounds or permissions subsetting Programmers can explicitly reduce the rights associated
with a capability – e.g., by further limiting its valid range, or by reducing permissions
to perform operations such as store. This might be used to narrow ranges to specific
elements in a data structure or array, such as a string within a larger structure.

Flow control on pointers Capability (and hence pointer) flow propagation can be limited us-
ing CHERI’s capability flow-control mechanism, and used to enforce higher-level poli-
cies such as that stack capabilities cannot be written to global data structures, or that
non-garbage-collectable capabilities cannot be passed across domain transitions.

Code-Pointer Protection

Again with support of the compiler and linker, CHERI capabilities can be used to implement
control-flow robustness that prevents code pointers from being corrupted or misused. This
can limit various forms of control-flow attacks, such as overwriting of return addresses on
the stack, as well as pointer re-use attacks such as Return-Oriented Programming (ROP) and
Jump-Oriented Programming (JOP). Potential applications include:

Return-address protection Capabilities can be used in place of pointers for on-stack return
addresses, preventing their corruption.

Function-pointer protection Function pointers can also be implemented as capabilities, pre-
venting corruption.

Exception-state protection On-stack exception state and signal frame information also con-
tain pointers whose protection will limit malicious control-flow attacks.

C++ vtable protection A variety of control-flow attacks rely on either corrupting C++ vtables,
or improper use of vtables, which can be detected and prevented using CHERI capabili-
ties to implement both pointers to, and pointers in, vtables.

2.4.2 Protecting Non-Pointer Types
One key property of CHERI capabilities is that although they are designed to represent pointers,
they can also be used to protect other types – whether those visible directly to programmers
through APIs or languages, or those used only in lower-level aspects of the implementation
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to improve robustness. A capability can be stripped of its hardware interpretation by masking
all hardware-defined permission bits (e.g., those authorizing load, store, and so on). A set of
purely software-defined permission bits can be retrieved, masked, and checked using suitable
instructions. Sealed capabilities further impose immutability on capability fields. These non-
pointer capabilities benefit from tag-based integrity and provenance protections, monotonicity,
etc. There are many possible use cases, including:

• Using CHERI capabilities to represent hardware resources such as physical addresses, in-
terrupt numbers, and so on, where software will provide implementation (e.g., allocation,
mapping, masking), but where capabilities can be stored and delegated.

• Using CHERI capabilities as canaries in address spaces: while stripping any hardware-
defined interpretation, tagged capabilities can be used to detect undesired memory writes
where bounds may not be suitable.

• Using CHERI capabilities to represent language-level type information, where there is
not a hardware interpretation, but unforgeable tokens are required – for example, to au-
thorize use of vtables by suitable C++ objects.

2.4.3 Isolation, Controlled Communication, and Compartmentalization
In software compartmentalization, larger complex bodies of software (such as operating-system
kernels, language runtimes, web browsers, and office suites) are decomposed into multiple
components that run in isolation from one another, having only selectively delegated rights to
the broader application and system, and limited further attack surfaces. This allows the im-
pact of exploited vulnerabilities or faults to be constrained, subject to software being suitably
structured – i.e., that its privileges and functionality have been suitable decomposed and safely
represented. Software sandboxing is one example of compartmentalization, in which particu-
larly high-risk software is tightly isolated due to the risks it poses – for example, in rendering
HTML downloaded from a web site, or in processing images attached to e-mail. Compartmen-
talization is a more general technique, of which sandboxing is just one design pattern, in which
privileges are delimited and minimized to improve software robustness [43, 81, 104, 36]. Soft-
ware compartmentalization is one of the few known techniques able to mitigate future unknown
classes of software vulnerability and exploitation, as its protective properties do not depend on
the specific vulnerability or exploit class being used by an attacker.

Software compartmentalization is build on two primitives: software isolation and controlled
communication. CHERI hybridizes two orthogonal mechanisms exist to construct isolation and
controlled communication: the conventional MMU (using multiple virtual address spaces as
occurs in widely used sandboxed process models), and CHERI’s in-address-space capability
mechanism (by constructing closures in the graph of reachable capabilities). These mecha-
nisms can be combined to construct fine-grained software compartmentalization within vir-
tual address spaces, which may complement (or even replace) a virtual-address-based process
model.

To constrain software execution using CHERI, a more privileged software runtime must
arrange that only suitable capabilities are delegated to software that must run in isolation. For
example, the runtime might grant software access to its own code, a stack, global variables,
and heap storage, but not to the private privileged state of the runtime, nor to the internal state
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of other isolated software components. This is accomplished by suitably initializing the thread
register file of the software (and hence CPU register file when it begins execution) to point
into an initial set of delegated code and allocation capabilities, and then exercising discretion
in storing capabilities into any further memory that it can reach. Capability non-forgeability,
monotonicity, and provencence validity ensure that new rights cannot be created by constrained
software, nor can existing rights be escalated. As isolation refers not just to the initial state,
but also the continuing condition of software, discretion in delegating capabilities must be con-
tinued throughout execution, in much the same way that software isolation using the MMU
depends not just on safe initial configuration, but safe continuing configuration as code exe-
cutes.

In order to achieve compartmentalization, and not simply isolation, CHERI’s selective non-
monotonic mechanisms can be used: exception handling, and jump-based invocation. If the
software supervisor arranges that additional rights will be acquired by the exception handler
(using more privileged kernel code and data capabilities), then the exception handler will be
able to perform non-monotonic transformations on the set of capabilities in the register file,
accessing memory (and other resouces) unavailable to the isolated code. Sealed capabilities al-
low encapsulated handles to resources to be delegated to isolated code in such a manner that the
sealed capabilities and resources they describe can be protected from interference. CHERI’s
jump-based invocation mechanism allows those resources to be unsealed in a controlled man-
ner, with control flow transfered to appropriate receiving code in a way that protects both the
caller and callee. This source of non-monotonicity can also be used to implement domain tran-
sition by having the caller discard rights prior to performing the jump, and the callee acquire
any necessary rights via unsealing of its capabilities. It is essential to CHERI’s design that
exercise of non-monotonicity support reliable transfer of control to code trusted with newly
acquired rights.

Efficient controlled communication can persist across domain transitions through the ap-
propriate delegation of capabilities to shared memory, as well as the delegation of sealed
capabilities allowing selected domain switching. CHERI’s permissions allow uses of shared
memory to be constrained in a variety of ways. The software configuring compartmentaliza-
tion might choose to delegate load-only or load-execute access to shared code or read-only
data segments. Other permissions constrain the propagation of capabilities; for example, the
software supervisor might allow communication only using data and not capabilities via a com-
munication ring between two mutually distrusting phases in a processing pipeline. Similarly,
CHERI’s local-global protections might be utilized to prevent capabilities for non-garbage-
collectable memory from being shared between mutually distrusting components, while still
allowing garbage-collectable heap allocations to be delegated.

Collectively, these mechanisms allow a variety of software-defined compartmentalization
models to be constructed. We have experimented with several, including the CheriBSD in-
process compartmentalization mechanism, which models domain transition on a secure func-
tion call with trusted stack maintained by the operating-system kernel via exception-based
invocation [118, 115], and microkernel-based systems that utilize jump-based domain tran-
sition within a single-address-space operating system, which model domain transition on asyn-
chronous or synchronous message passing. Effective software compartmentalization relies not
only on limiting access to memory, but also a variety of other properties such as appropriate
(perhaps fair or prioritized) scheduling, resource allocation, and non-leakage of data or rights
via newly allocated or freshly reused memory, which are higher-level properties that must be
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ensured by the software supervisor. While many of these concerns exist in MMU-based soft-
ware compartmentalization, they can take on markedly different forms or implications. For
example, the zeroing of memory before reuse prevents the leakage of rights, and not just data,
in the capability model. As with MMU-based isolation and compartmentalization, CHERI
provides strong architectural primitives, and is not intended to directly address microarchitec-
tural concerns such as cache side channels or information leakage through branch predictors,
performance counters, or other state.

Substantially different architectural underpinnings for capability-based, rather than MMU-
based, compartmentalization give it quite different practical properties. For example, two pro-
tection domains sharing access to a region of memory will not experience increased page-table
and TLB footprint by virtue of sharing a virtual address space. Similarly, the model for delegat-
ing shared memory is substantially different: simple pointer delegation, rather than page-table
construction, has far lower overhead. On the other hand, revoking access to shared memory via
the capability model requires either non-reuse of portions of the virtual address space, sweeping
capability revocation, or garbage collection (see Section 2.3.14). We have found that the two
approaches complement one another well: virtual memory continues to provide a highly useful
underpinning for conventional coarse-grained virtual-machine and process models, whereas
CHERI compartmentalization works extremely well within applications as it caters to rapid
domain switching and large amounts of sharing between fine-grained and tightly coupled com-
ponents.

2.4.4 Source-Code and Binary Compatibility
CHERI supports Application Programming Interfaces (APIs) and Application Binary Inter-
faces (ABIs) with compatibility properties intended to facilitate incremental deployment of its
features within current software environments. For example, an OS kernel can be extended to
support CHERI capabilities in selected userspace processes with only minor extensions to con-
text switching and process setup, allowing both conventional and CHERI-extended programs
to execute – without implying that the kernel itself needs to be implemented using capabili-
ties. Further, given suitable care with ABI design, CHERI-extended libraries can exist within
otherwise unmodified programs, allowing fine-grained memory protection and compartmen-
talization to be deployed selectively to the most trusted software (i.e., key system libraries) or
least trustworthy (e.g., video CODECs), without disrupting the larger ecosystem. CHERI has
been tested with a large range of system software, and efficiently supports a broad variety of C
programming idioms poorly supported by the state of the art in software memory protection. It
provides strong and reliable hardware-assisted protection in eliminating common exploit paths
that today can be mitigated only by using probabilistically correct mechanisms (e.g., grounded
in address-space randomization) that often yield to determined attackers.

2.4.5 Code Generation and ABIs
Compilers, static and dynamic linkers, debuggers, and operating systems will require extension
to support CHERI capabilities. We anticipate multiple conventions for code generation and
binary interfaces, including:

Conventional RISC code generation Unmodified operating systems, user programs, and user
libraries will work without modification on CHERI processors. This code will not receive
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the benefits of CHERI memory protection – although it may execute encapsulated within
sandboxes maintained by CHERI-aware code, and thus can participate in a larger com-
partmentalized application. It will also be able to call hybrid code.

Hybrid code generation Conventional code generation, calling conventions, and binary inter-
faces can be extended to support (relatively) transparent use of capabilities for selected
pointers – whether hand annotated (e.g., with a source-code annotation) or statically de-
termined at compile time (e.g., return addresses pushed onto the stack). Hybrid code will
generally interoperate with conventional code with relative ease – although conventional
code will be unable to directly dereference capability-based types. CHERI memory-
protection benefits will be seen only for pointers implemented via capabilities – which
can be adapted incrementally based on tolerance for software and binary-interface mod-
ification.

Pure-capability code generation Software can also be compiled to use solely capability-based
instructions for memory access, providing extremely strong memory protection. Direct
calling in and out of pure-capability code from or to conventional RISC code or hy-
brid code requires ABI wrappers, due to differing calling conventions. Extremely strong
memory protection is experienced in the handling of both code and data pointers.

Compartmentalized code is accessed and can call out via object-capability invocation and
return, rather than by more traditional function calls and returns. This allows strong iso-
lation between mutually distrusting software components, and makes use of a new calling
convention that ensures, among other properties, non-leakage of data and capabilities in
unused argument and return-value registers. Compartmentalized code might be gener-
ated using any of the above models; although it will experience greatest efficiency when
sharing data with other compartments if a capability-aware code model is used, as this
will allow direct loading and storing from and to memory shared between compartments.
Containment of compartmentalized components does not depend on the trustworthiness
of the compiler used to generate code for those components.

Entire software systems need not utilize only one code-generation or calling-convention
model. For example, a kernel compiled with conventional RISC code, and a small amount of
CHERI-aware assembly, can host both hybrid and pure-capability userspace programs. A ker-
nel compiled to use pure-capability or hybrid code generation could similarly host userspace
processes using only conventional RISC code. Within the kernel or user processes, some com-
ponents might be compiled to be capability-aware, while others use only conventional code.
Both capability-aware and conventional RISC code can execute within compartments, where
they are sandboxed with limited rights in the broader software system. This flexibility is critical
to CHERI’s incremental adoption model, and depends on CHERI’s hybridization of the con-
ventional MMU, OS models, and C programming-language model with a capability-system
model.

2.4.6 Operating-System Support
Operating systems may be modified in a number of forms to support CHERI, depending on
whether the goal is additional protection in userspace, in the kernel itself, or some combination
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of both. Typical kernel deployment patterns, some of which are orthogonal and may be used in
combination, might be:

Minimally modified kernel The kernel enables CHERI support in the processor, initializes
register state during context creation, and saves/restores capability state during context
switches, with the goal of supporting use of capabilities in userspace. Virtual memory
is extended to maintain tag integrity across swapping, and to prevent tags from being
used with objects that cannot support them persistently – such as memory-mapped files.
Other features, such as signal delivery and debugging support require minor extensions
to handle additional context. The kernel can be compiled with a capability-unaware
compiler and limited use of CHERI-aware assembly. No additional protection is afforded
to the kernel in this model; instead, the focus is on supporting fine-grained memory
protection within user programs.

Capability domain switching in userspace Similar to the minimally modified kernel model,
only modest changes are made to the kernel itself. However, some additional extensions
are made to the process model in order to support multiple mutually distrusting security
domains within user processes. For example, new CCall and CReturn exception han-
dlers are created, which implement kernel-managed ‘trusted stacks’ for each user thread.
Access to system calls is limited to authorized userspace domains.

Fine-grained capability protection in the kernel In addition to capability context switching,
the kernel is extended to support fine-grained memory protection throughout its design,
replacing all kernel pointers with capabilities. This allows the kernel to benefit from
pointer tagging, bounds checking, and permission checking, mitigating a broad range of
pointer-based attacks such as buffer overflows and return-oriented programming.

Capability domain switching in the kernel Support for a capability-aware kernel is extended
to include support for fine-grained, capability-based compartmentalization within the
kernel itself. This in effect implements a microkernel-like model in which components
of the kernel, such as filesystems, network processing, etc., have only limited access to
the overall kernel environment delegated using capabilities. This model protects against
complex threats such as software supply-chain attacks against portions of the kernel
source code or compiled kernel modules.

Capability-aware system-call interface Regardless of the kernel code generation model, it
is possible to add a new system-call Application Binary Interface (ABI) that replaces
conventional pointers with capabilities. This has dual benefits for both userspace and
kernel safety. For userspace, the benefit is that system calls operating on its behalf will
conform to memory-protection policies associated with capabilities passed to the kernel.
For example, the read system call will not be able to overflow a buffer on the userspace
stack as a result of an arithmetic error. For the kernel, referring to userspace memory only
through capabilities prevents a variety of confused deputy problems in which kernel bugs
in validating userspace arguments could permit the kernel to access kernel memory when
userspace access is intended, perhaps reading or overwriting security-critical data. The
capability-aware ABI would affect a variety of user-kernel interactions beyond system
calls, including ELF auxiliary arguments during program startup, signal handling, and
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so on, and resemble other pointer-compatibility ABIs – such as 32-bit compatibility for
64-bit kernels.

These points in the design space revolve around hybrid use of CHERI primitives, with a con-
tinued strong role for the MMU implementing a conventional process model. It is also possible
to imagine operating systems created without taking this view:

Pure-capability operating system A clean-slate operating-system design might choose to min-
imize or eliminate MMU use in favor of using the CHERI capability model for all protec-
tion and separation. Such a design might reasonably be considered a single address-space
system in which capabilities are interpreted with respect to a single virtual address space
(or the physical address space in MMU-free designs). All separation would be imple-
mented in terms of the object-capability mechanism, and all memory sharing in terms
of memory capability delegation. If the MMU is retained, it might be used simply for
full-system virtualization (a task for which it is well suited), or also support mechanisms
such as paging and revocation within the shared address space.
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Chapter 3

Mapping the CHERI Protection Model
into Architecture

Having considered the software-facing semantics of the CHERI protection model in the previ-
ous chapter, we turn to the high-level architectural implications of CHERI capabilities within
a contemporary 64-bit RISC ISA. We attempt to remain at some distance from the specifics of
the 64-bit MIPS ISA on which we have prototyped CHERI in the hope of accomplishing gener-
ality. However, MIPS differs substantially from other RISC ISAs in several areas – especially
in its use of a software-managed Translation Lookaside Buffer (TLB), and in the details of its
exception mechanism. In those cases, we necessarily take a MIPS-oriented perspective.

In this chapter, we describe our high-level design goals, the hybrid capability-system ap-
proach as applied in an instruction set, the implications for the software stack, and the CHERI
capability model. We also describe the implications of CHERI for exceptions, tagged memory,
and peripheral devices. In Chapters 4 and 5, we describe CHERI-MIPS, a concrete instantia-
tion of the CHERI protection model as an extension to the 64-bit MIPS ISA, based on these
principles.

We conclude with a consideration of “deep” versus “surface” design choices: where there is
freedom to make different choices in instantiating the CHERI model in a specific ISA, with an
eye towards both the adaptation design space and also applications to further non-MIPS ISAs,
and where divergence might lead to protection inconsistency across architectures. These topics
are revisited in greater detail in Chapter 6.

3.1 Design Goals
The key observation motivating the CHERI design is that virtual-memory-based protection
techniques, nearly universal in commodity CPUs, are neither sufficiently expressive nor suffi-
ciently efficient to support fine-grained memory protection or scalable software compartmental-
ization. Virtual addressing, implemented by a memory management unit (MMU) and transla-
tion look-aside buffer (TLB), clearly plays an important role by disassociating physical memory
allocation and address-space management, facilitating software features such as strong separa-
tion, OS virtualization, and virtual-memory concepts such as swapping and paging. However,
with a pressing need for scalable and fine-grained separation, the overheads and programmabil-
ity difficulties imposed by virtual addressing as the sole primitive actively deter employment of
the principle of least privilege at an architectural level (i.e., in instruction generation, the rep-
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resentation of pointers, etc.) and also at a software abstraction level (in representing isolation
and controlled communication required for compartmentalization).

The security goals identified in Section 2.4 (spatial safety, temporal safety, software com-
partmentalization, and enforcement of language-level properties), combined with observations
about TLB performance and a desire to compartmentalize existing single-address-space ap-
plications, led us to the conclusion that new instruction set primitives for memory and object
control within an address space would usefully complement existing address-space-based sep-
aration. In this view, security state associated with a thread should be captured as a set of
registers that can be explicitly managed by code, and be preserved and restored cheaply on ei-
ther side of security domain transitions – in effect, part of a thread’s register file. In the parlance
of contemporary CPU and OS design, this establishes a link between architectural threads (OS
threads) and security domains, rather than address spaces (OS processes) and security domains.

Because we wish to consider delegation of memory and object references within an address
space as a first-class operation, we choose to expose these registers to the programmer (or,
more desirably, the compiler) so that they can be directly manipulated and passed as arguments.
Previous systems built along these principles have been referred to as capability systems, a term
that also usefully describes CHERI.

CHERI’s capability model represents an explicit capability system, in which common capa-
bility manipulation operations are unprivileged instructions and transfer of control to a super-
visor during regular operations is avoided. In historic capability systems, microcode (or even
the operating system) was used to implement complex capability operations, some of which
were privileged. In contemporary RISC CPU designs, the intuitive functional equivalent has
an exception that triggers the supervisor. However, entrance to a supervisor usually remains
an expensive operation, and hence one to avoid in high-performance paths. In keeping with
the RISC design philosophy, we are willing to delegate significant responsibility for safety to
the compiler and run-time linker to minimize hardware knowledge of higher-level language
constructs.

CHERI capabilities may refer to regions of memory, with bounded memory access (as in
segments). Memory capabilities will frequently refer to programmer-described data structures
such as strings of bytes, structures consisting of multiple fields, and entries in arrays, although
they might also refer to larger extents of memory (e.g., the entire address space). While com-
patibility features in the CHERI ISA allow programmers to continue to use pointers in legacy
code, we anticipate that capabilities will displace pointer use as code is migrated to CHERI
code generation, providing stronger integrity for data references, bounds checking, permission
checking, and so on. In our prototype extensions to the C language, programmers can explicitly
request that capabilities be used instead of pointers, providing stronger protection, or in some
cases rely on the compiler to automatically generate capability-aware code – for example, when
code accessing the stack is compiled with a suitable application binary interface (ABI). We are
exploring further static analysis and compilation techniques that will allow us to automate de-
ployment of capability-aware code to a greater extent, minimizing disruption of current source
code, while allowing programs to experience protection improvements.

Alternatively, capabilities may refer to objects that can be invoked, which allows the im-
plementation of protected subsystems – i.e., services that execute in a security domain other
than the caller’s. At the moment of object invocation, caller capabilities are sealed to protect
them from inappropriate use by the callee, and the invoked object is unsealed to allow the
object callee to access private resources it requires to implement its services. The caller and
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Figure 3.1: CHERI’s hybrid capability architecture: initially, legacy software components ex-
ecute without capability awareness, but security-sensitive TCB elements or particularly risky
code bases are converted. In the long term, all packages are converted, implementing least
privilege throughout the system.

callee experience a controlled delegation of resources across object invocation and return. For
example, the caller might delegate access to a memory buffer, and the callee might then write
a Unicode string to the buffer describing the contents of the protected object, implementing
call-by-reference.1 A key goal has been to allow capabilities passed across protection-domain
boundaries to refer to ordinary C data on the stack or heap, allowing easier adaptation of exist-
ing programs and libraries to use CHERI’s features. The semantics of capabilities are discussed
in greater detail later in this and the following chapter.

3.2 A Hybrid Capability-System Architecture
Despite our complaints about the implications of virtual addressing for compartmentalization,
we feel that virtual memory is a valuable architectural facility: it provides a strong separation
model; it makes implementing facilities such as swapping and paging easier; and by virtue of
its virtual layout, it can significantly improve software maintenance and system performance.
CHERI therefore adopts a hybrid capability-system model: we retain support for a commodity
virtual-memory model (implemented using an MMU with a TLB) while also introducing new
primitives to permit multiple security domains within address spaces (Figure 3.1). Each address
space becomes its own decomposition domain, within which protected subsystems can interact
using both hierarchical and non-hierarchical security models. In effect, each address space is
its own virtual capability machine.

To summarize our approach, CHERI draws on two distinct, and previously uncombined,
designs for processor architecture:

• Page-oriented virtual memory systems allow an executive (often the operating system
kernel) to create a process abstraction via the MMU. In this model, the kernel is respon-

1CHERI does not implement implicit rights amplification, a property of some past systems including HYDRA.
Callers across protected subsystem boundaries may choose to pass all rights they hold, but it is our expectation
that they will generally not do so – otherwise, they would use regular function calls within a single protected
subsystem.
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sible for maintaining separation using this relatively coarse tool, and then providing sys-
tem calls that allow spanning process isolation, subject to access control. Systems such
as this make only weak distinctions between code and data, and in the mapping from
programming language to machine code discard most typing and security information.

• Capability systems, often based on a single global address space, map programming-
language type information and protection constraints into instruction selection. Code at
any given moment in execution exists in a protection domain consisting of a dynamic set
of rights whose delegation is controlled by the flow of code. (These instantaneous rights
are sometimes referred to as spheres of protection in the operating system and security
literature.) Such a design generally offers greater assurance, because the principle of
least privilege can be applied at a finer granularity.

Figure 3.1 illustrates the following alternative ways in which the CHERI architecture might
be used. In CHERI, even within an address space, existing and capability-aware code can
be hybridized, as reads and writes via general-purpose MIPS registers are automatically in-
directed through a reserved capability register before being processed by the MMU. This al-
lows a number of interesting compositions, including the execution of capability-aware (and
hence significantly more robust) libraries within a legacy application. Another possibility is a
capability-aware application running one or more instances of capability-unaware code within
sandboxes, such as legacy application components or libraries – effectively allowing the trivial
implementation of the Google Native Client model.

Finally, applications can be compiled to be fully capability-aware, i.e., able to utilize the
capability features for robustness and security throughout their structure. The notion of a
capability-aware executive also becomes valuable – likely as some blend of the run-time linker
and low-level system libraries (such as libc): the executive will set up safe linkage between
mutually untrusting components (potentially with differing degrees of capability support, and
hence differing ABIs), and ensure that memory is safely managed to prevent memory-reuse
bugs from escalating to security vulnerabilities.2 Useful comparison might also be made be-
tween our notion of an in-address-space executive and a microkernel, as the executive will
similarly take responsibility for configuring protection and facilitating controlled sharing of
data. As microkernels are frequently capability-based, we might find that not only are ideas
from the microkernel space reusable, but also portions of their implementations. This is an
exciting prospect, especially considering that significant effort has been made to apply formal
verification techniques to microkernels.

3.3 The CHERI Software Stack
The notion of hybrid design is key to our adoption argument: CHERI systems are able to exe-
cute today’s commodity operating systems and applications with few modifications. Use of ca-
pability features can then be selectively introduced in order to raise confidence in the robustness
and security of individual system components, which are able to fluidly interact with other un-
enhanced components. This notion of hybrid design first arose in Cambridge’s Capsicum [104]
(which blends the POSIX Application Programming Interface (API), as implemented in the

2Similar observations about the criticality of the run-time linker for both security and performance in capability
systems have been made by Karger [45].
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FreeBSD operating system) with a capability design by allowing processes to execute in hy-
brid mode or in capability mode. Traditional POSIX code can run along side capability-mode
processes, allowing the construction of sandboxes; using a capability model, rights can be dele-
gated to these sandboxes by applications that embody complex security policies. One such ex-
ample from our USENIX Security 2010 Capsicum paper [104] is the Chromium web browser,
which must map the distributed World Wide Web security model into local OS containment
primitives.

CHERI’s software stack will employ hybrid design principles from the bottom up: capability-
enhanced separation kernels will be able to implement both conventional virtual-machine in-
terfaces to guest operating systems, or directly host capability-aware operating systems or ap-
plications, ensuring robustness. This would provide an execution substrate on which both com-
modity systems built on traditional RISC instruction models (such as FreeBSD) can run side
by side with a pure capability-oriented software stack, such as capability-adapted language
runtimes. Further, CheriBSD (a CHERI-enhanced version of the FreeBSD operating system,
and its applications) will be able to employ CHERI features in their own implementations. For
example, key data-processing libraries (such as image compression or video decoding) might
use CHERI features to limit the impact of programming errors through fine-grained memory
protection, but also apply compartmentalization to mitigate logical errors through the principle
of least privilege. We have extended the existing Clang/LLVM compiler suite to support C-
language extensions for capabilities, allowing current code to be recompiled to use capability
protections based on language-level annotations, but also to link against unmodified code.

To this end, the CHERI ISA design allows software context to address memory either via
legacy MIPS ISA load and store instructions, which implicitly indirect through a reserved ca-
pability register configurable by software, or via new capability load and store instructions that
allow the compiler to explicitly name the object to be used. In either case, access is permitted
to memory only if it is authorized by a capability that is held in the register file (or, by transitiv-
ity, any further capability that can be retrieved using those registers and the memory or objects
that it can reach). New ABIs and calling conventions are defined to allow transition between
(and across) CHERI-ISA and MIPS-ISA code to allow legacy code to invoke capability-aware
code, and vice versa. For example, in this model CheriBSD might employ capability-oriented
instructions in the implementation of risky data manipulations (such as network-packet pro-
cessing), while still relying on traditionally written and compiled code for the remainder of
the kernel. Similarly, within the Chromium web browser, the JavaScript interpreter might be
implemented in terms of capability-oriented instructions to offer greater robustness, while the
remainder of Chromium would use traditional instructions.

One important property of our architecture design is that capabilities can take on differ-
ent semantics within different address spaces, with each address-space’s executive integrating
memory management and capability generation. In the CheriBSD kernel, for example, virtual
addressing and capability use can be blended; the compiler and kernel memory allocator can
use capabilities for certain object types, but not for others. In various userspace processes,
a hybrid UNIX / C runtime might implement limited pools of capabilities for specially com-
piled components, but another process might use just-in-time (JIT) compilation techniques to
map Java bytecode into CHERI instructions, offering improved performance and a significantly
smaller and stronger Java TCB.

Capabilities supplement the purely hierarchical ring model with a non-hierarchical mecha-
nism – as rings support traps, capabilities support protected subsystems. One corollary is that
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the capability model could be used to implement rings within address spaces. This offers some
interesting opportunities, not least the ability to implement purely hierarchical models where
desired; for example, a separation kernel might use the TLB to support traditional OS instances,
but only capability protections to constrain an entirely capability-based OS. A further extreme
is to use the TLB only for paging support, and to implement a single-address-space operating
system as envisioned by the designers of many historic capability systems.

This hybrid view offers a vision for a gradual transition to stronger protections, in which
individual libraries, applications, and even whole operating systems can incrementally adopt
stronger architectural memory protections without sacrificing the existing software stack. Dis-
cussion of these approaches also makes clear the close tie between memory-oriented protection
schemes and the role of the memory allocator, an issue discussed in greater depth later in this
chapter.

3.4 Architectural Goals
Given the pointer-centric objectives of the CHERI protection model, along with our compati-
bility and performance objectives, we identified the following architectural goals in identifying
mappings into a contemporary RISC instruction-set architecture:

1. Extensions should subscribe to the RISC design philosophy: a load-store instruction
set intended to be targeted by compilers, with more complex instructions motivated by
quantitative analysis. While current page-table structures (or in the case of MIPS, simply
TLB mechanisms) should be retained for compatibility, new table-oriented structures
should be avoided in describing new security primitives. In general, instructions that do
not access memory should be single cycle.

2. Just as C-language pointers map cleanly and efficiently into integers today, pointers must
similarly map cleanly, efficiently, and vastly more robustly, into capabilities. This should
apply both to language-visible data and code pointers, but also pointers used in imple-
menting language features, such as references to C++ vtables, return addresses, etc.

3. Protection primitives must be common-case, not exceptional, occurring in performance-
centric code paths such as stack and heap allocation, on pointer arithmetic, and on pointer
load and store, rather than being infrequent amortizable costs.

4. New primitives, such as tagged memory and capabilities, must be efficiently representable
in contemporary hardware designs (e.g., superscalar processors and buses), while offer-
ing substantial semantic and performance improvements that would be difficult or im-
possible to support on current architectures.

5. Flexibility must exist to employ only legacy integer pointers or capabilities as dictated
by software design and code generation, trading off compatibility, protection, and per-
formance – while ensuring that security properties are consistently enforced and can be
reasoned about cleanly.

6. When used to implement isolation and controlled communication in support of com-
partmentalization, CHERI’s communication primitives should scale with the actual data
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footprint (i.e., the working set of the application). Among other things, this implies that
communication should not require memory copying costs that grow with data size, nor
trigger TLB aliasing that increases costs as the degree of sharing increases. Our perfor-
mance goal is to support at least two orders of magnitude more active protection domains
per core than current MMU-based systems support (going from tens or hundreds to at
least tens of thousands of domains).

7. When sharing memory or object references between protection domains, programmers
should see a unified namespace connoting efficient and comprehensible delegation.

8. When implementing efficient protection-domain switching, the architecture should sup-
port a broad range of software-defined policies, calling conventions, and memory mod-
els. Where possible, software TCB paths should be avoided – but where necessary for
semantic flexibility, they should be supported safely and efficiently.

9. CHERI should compose sensibly with MMU-based memory protection: current MMU-
based operating systems should run unmodified on CHERI designs, and as CHERI sup-
port is introduced in an MMU-based operating system, it should compose naturally while
allowing both capability-aware and legacy programs to run side-by-side.

10. As protection pressure shifts from conventional MMU-based techniques to reference-
oriented protection using capabilities, page-table efficiency should increase as larger page
sizes cease to penalize protection.

11. More generally, we seek to exploit hardware performance gains wherever possible: in
eliminating repeated software-generated checks by providing richer semantics, in pro-
viding stronger underlying atomicity for pointer integrity protection that would be very
difficult to provide on current architectures, and in providing more scalable models for
memory sharing between mutually distrusting software components. By making these
operations more efficient, we encourage their more extensive use.

3.5 Capability Model
Chapters 4 and 5 provide detailed descriptions of CHERI’s capability registers, capabilities in
tagged memory, changes to the interpretation of current instructions, new capability instruc-
tions, exception delivery, and so on. These concepts are briefly introduced here.

3.5.1 Capabilities are for Compilers
Throughout, we stress the distinction between the notion of the architectural protection model
and the programming model; unlike in historic CISC designs, and more in keeping with historic
RISC designs, CHERI instructions are intended to support the activities of the compiler, rather
than be directly programmed by application authors. While there is a necessary alignment
between programming language models for computation (and in the case of CHERI, security)
and the hardware execution substrate, the purpose of CHERI instructions is to make it possible
for the compiler to cleanly and efficiently implement higher-level models, and not implement
them directly. As such, we differentiate the idea of an architectural capability type from a
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programming language type – the compiler writer may choose to conflate the two, but this is
an option rather than a requirement.

3.5.2 Capabilities

Capabilities are unforgeable tokens of authority through which programs access all memory
and services within an address space. Capabilities may be held in capability registers, where
they can be manipulated or dereferenced using capability coprocessor instructions, or in mem-
ory. Capabilities themselves may refer to memory (unsealed capabilities) or objects (sealed
capabilities). Memory capabilities are used as arguments to load and store instructions, to ac-
cess either data or further capabilities. Object capabilities may be invoked to transition between
protection domains using call and return instructions.

Unforgeability is implemented by two means: tag bits and controlled manipulation. Each
capability register (and each capability-aligned physical memory location) is associated with
a tag bit indicating that a capability is valid. Attempts to directly overwrite a capability in
memory using data instructions automatically clear the tag bit. When data is loaded into a
capability register, its tag bit is also loaded; while data without a valid tag can be loaded into a
capability register, attempts to dereference or invoke such a register will trigger an exception.

Guarded manipulation is enforced by virtue of the ISA: instructions that manipulate capa-
bility register fields (e.g., base, offset, length, permissions, type) are not able to increase the
rights associated with a capability. Similarly, sealed capabilities can be unsealed only via the
invocation mechanism, or via the unseal instruction subject to similar monotonicity rules. This
enforces encapsulation, and prevents unauthorized access to the internal state of objects.

We anticipate that many languages will expose capabilities to the programmer via point-
ers or references – e.g., as qualified pointers in C, or mapped from object references in Java.
Similarly, capabilities may be used to bridge communication between different languages more
safely – for example, by imposing Java memory-protection and security properties on native
code compiled against the Java Native Interface (JNI). In general, we expect that languages
will not expose capability registers to management by programmers, instead using them for
instruction operands and as a cache of active values, as is the case for general-purpose registers
today. On the other hand, we expect that there will be some programmers using the equivalent
of assembly-language operations, and the CHERI compartmentalization model does not place
trust in compiler correctness for non-TCB code.

3.5.3 Capability Registers

CHERI supplements the 32 general-purpose per-hardware thread registers provided by the
MIPS ISA with 32 additional capability registers. Where general-purpose registers describe
the computation state of a software thread, capability registers describe its instantaneous rights
within an address space. A thread’s capabilities potentially imply a larger set of rights (loadable
via held capabilities) which may notionally be considered as the protection domain of a thread.

There are also several implicit capability registers associated with each architectural thread,
including a memory capability that corresponds to the instruction pointer, and capabilities used
during exception handling. This is structurally congruent to implied registers and system con-
trol coprocessor (CP0) registers found in the base MIPS ISA.
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Unlike general-purpose registers, capability registers are structured, consisting of a 1-bit
tag and a 256-bit set of architectural fields with defined semantics and constrained values.
Capability instructions retrieve and set these fields by moving values in and out of general-
purpose registers, enforcing constraints on field manipulation.

Microarchitectural and in-memory representations of capabilities may differ substantially
from the architectural representation in terms of size and contents, but these differences will
not be exposed via instructions operating on capability-register fields. We define two variants
with 256-bit and 128-bit in-memory representations of a conceptual 256-bit capability register,
with the latter employing capability compression (Section 4.11) to reduce the register-file and
memory footprint.

The ISA-visible capability fields are:

Sealed bit If the sealed bit is unset, the capability describes a memory segment that is accessi-
ble via load and store instructions. If it is set, the capability describes an object capability,
which can be accessed only via object invocation.

Permissions The permissions mask controls operations that may be performed using the ca-
pability; some permissions are architecturally defined, controlling instructions that may
be used with the capability; others are software-defined and intended for use with the
object-capability mechanism.

Object type Notionally, a software-managed object type used to ensure that corresponding
code and data capabilities for an object are used together correctly.

Base This is the base address of a memory region.

Length This defines the length of a memory region.

Offset A free-floating pointer that will be added to the base when dereferencing a capability;
the value can float outside of the range described by the capability, but an exception will
be thrown if a requested access is out of range.

Reserved fields These bits are reserved for future experimentation.

Tag bit The tag bit is not part of the base 256 bits. It indicates whether or not the capability
register holds a valid capability; this allows non-capability values to be moved via ca-
pability registers, making it possible to implement software functions that, for example,
copy memory oblivious to capabilities being present.

We have discussed a number of schemes to reduce overhead implied by the quite sizable
capability register file:

• Having 32 capability registers is nicely symmetric with the MIPS ISA, but in practice
leads to substantial overhead; this could be reduced to a smaller number such as 16, or
even 8.

• Modeling our approach on the MIPS coprocessor opcode allocation, we have chosen to
implement capabilities as an independent register file from the general-purpose register
file. In fact, these could be combined, extending some or all existing registers to incorpo-
rate capability metadata. This would reduce or eliminate the need for additional control
logic, and substantially reduce the overall size of a software context.
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• 256-bit capabilities offer complete precision in representing the virtual address and bounds
in a capability, as well as object type and a large set of software-defined permissions. By
reducing the size of the representable virtual address (e.g., from 64 bits to 40 bits), as
well as the sizes of other fields, a 128-bit capability can be accomplished.

• Similarly, fat-pointer compression schemes (e.g., [49] can be exploited to reduce over-
head of maintaining bounds, which often contain significant redundancy relative to a
capability’s virtual address. Combined with other field reductions, and stronger align-
ment requirements, this can also accomplish a 128-bit capability; we description such a
scheme in Section 4.11.

• It is also plausible to implement capabilities of multiple sizes – for example, a larger
object-capability size, and smaller memory-capability size, using a full 256-bit represen-
tation in the register file, but different load and store instructions for what are effectively
different in-memory types. This approach is less appealing as it will expose the differ-
ences in types to the software toolchain – e.g., requiring multiple pointer sizes.

Object invocation is a central operation in the CHERI ISA, as it implements protected
subsystem domain transitions that atomically update the set of rights (capabilities) held by an
architectural thread, and that provide a trustworthy return path for later use. When an object
capability is invoked, its data and code capabilities are unsealed to allow access to per-object
instance data and code execution. Rights may be both acquired and dropped on invocation,
allowing non-hierarchical security models to be implemented. Strong typing and type checking
of objects, a notion first introduced in PSOS’s type enforcement, [74, 75] serves functions both
at the ISA level – providing object atomicity despite the use of multiple independent capabilities
to describe an object – and to support language-level type features. For example, types can be
used to check whether additional object arguments passed to a method are as they should be.
As indicated earlier, the architectural capability type may be used to support language-level
types, but should not be confused with language-level types.

3.5.4 Memory Model
Conceptually, capabilities are unforgeable tokens of authority. In the most reductionist sense,
the CHERI capability namespace is the virtual address space, as all capabilities name (and
authorize) actions on addresses. CHERI capabilities are unforgeable by virtue of capability
register semantics and tagged memory, and act as tokens of authority by virtue of memory
segments and object capability invocation.

However, enforcement of uniqueness over time is a property of the software memory allo-
cation policy. More accurately, it is a property of virtual address-space allocation and reuse,
which rests in a memory model composed from the capability mechanism, virtual address space
configuration, and software language-runtime memory allocation.

This issue has presented a significant challenge in the design of CHERI: how can we pro-
vide sufficient mechanism to allow memory management, fundamentally a security operation
in capability systems, while not overly constraining software runtimes regarding the semantics
they can implement? Should we provide architecture-assisted garbage collection along the lines
of the Java Virtual Machine’s garbage collection model? Should we implement explicit revoca-
tion functionality, along the lines of Redell’s capability revocation scheme (effectively, a level
of indirection for all capabilities, or selectively when the need for revocation is anticipated)?
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We have instead opted for dual semantics grounded in the requirements of real-world low-
level system software: CHERI lacks a general revocation scheme; however, in coordination
with the software stack, it can provide for both strict limitations on the extent of architecture-
supported delegation periods, and software-supported generalized revocation using interposi-
tion. The former is intended to support the brief delegation of arguments from callers to callees
across object-capability invocation; the latter allows arbitrary object reference revocation at a
greater price.

3.5.5 Local Capabilities and Revocation

To this end, capabilities may be further tagged as local, which allows them to be processed in
registers, stored in constrained memory regions, and passed on via invocation of other objects.
The goal of local capabilities is to introduce a limited form of revocation that is appropriate
for temporary delegation across protected subsystem invocations, which are not permitted to
persist beyond that invocation. Among other beneficial properties, local capabilities allow the
brief delegation of access to arguments passed by reference, such as regions of the caller’s stack
(a common paradigm in C language programming).

In effect, local capabilities inspire a single-bit information-flow model, bounding the po-
tential spread of capabilities for ephemeral objects to capability registers and limited portions
of memory. The desired protection property can be enforced through appropriate memory man-
agement by the address-space executive: that is, local capabilities can be limited to a particular
thread, with bounded delegation time down the (logical) stack.3

Generalized revocation is not supported directly by the CHERI ISA; instead, we rely on
the language runtime to implement either a policy of virtual address non-reuse or garbage
collection. A useful observation is that address space non-reuse is not the same as memory non-
reuse: the meta-data required to support sparse use of a 64-bit address space scales with actual
allocation, rather than the span of consumed address space. For many practical purposes, a 64-
bit address space is virtually infinite4, so causing the C runtime to not reuse address space is now
a realistic option. Software can, however, make use of interposition to implement revocation or
other more semantically rich notions of privilege narrowing, as proposed in HYDRA.

3.5.6 Architectural Privilege

In operating-system design, privileges are a special set of rights exempting a component from
the normal protection and access-control models – perhaps for the purposes of system boot-
strapping, system management, or low-level functionality such as direct hardware access. In
CHERI, three notions of privilege are defined, complementing current notions of architectural
privilege:

3It has been recommended that we substitute a generalized generation count-based model for an information
flow model. This would be functionally identical in the local capability case, used to protect per-stack data.
However, it would also allow us to implement protection of thread-local state, as well as garbage collection, if
desired. The current ISA does not yet reflect this planned change.

4As is 640K of memory. It has also not escaped our notice that there is a real OS cost to maintaining the
abstraction of virtual memory; one merit to our approach is that it will deemphasize the virtual memory as a
protection system, potentially reducing that overhead.
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Ring-based privilege derives from the widely used architectural notion that code executes
within a ring, typically indicated by the state of a privileged status register, authoriz-
ing access to architectural protection features such as MMU configuration or interrupt
management. Code executing in lower rings, such as a microkernel, hypervisor, or full
operating-system kernel, has the ability to manage state giving it control over state in
higher, but not lower, rings. When a privileged operation is attempted in a higher ring,
an architectural exception will typically be thrown, allowing a supervisor to emulate the
operation, or handle this as an error by delivering a signal or terminating a process. More
recent hardware architectures allow privileged operations to be virtualized, improving
the performance of full-system virtualization in which code that would historically have
run in the lowest ring (i.e., the OS kernel) now runs over a hypervisor.

CHERI retains and extends this notion of privilege into the capability model: when an
unauthorized operation is performed (such as attempting to expand the rights associated
with a capability), the processor will throw an exception and transition control to a lower
ring. The exception mechanism itself is modified in CHERI, in order to save and restore
the capability register state required within the execution of each ring – to authorize
appropriate access for the exception handler. The lower ring may hold the privilege to
perform the operation, and emulate the unauthorized operation, or perform exception-
handling operations such as delivering a signal to (or terminating) the user process.

Capability control of ring-related privileges refers to limitations that can be placed on ring-
related privileges using the capability model. Normally, code executing in lower protec-
tion rings (e.g., the supervisor) has access to privileged functions, such as MMU, cache,
and interrupt management, by virtue of ambient authority. CHERI permits that ambient
authority to be constrained via capability permissions on the program-counter capability,
preventing less privileged code (still executing within a low ring) from exercising virtual-
memory features that might allow bypassing of in-kernel sandboxing. More generally,
this allows allows vulnerability mitigation by requiring explicit (rather than implicit)
exercise of privilege, as individual functions can be marked as able to exercise those
features, with other kernel code unable to do so.

Privilege through capability context is a new, and more general, notion of privilege arising
solely from the capability model, based on a set of rights held by an execution context
connoting privilege within an address space. When code begins executing within a new
address space, it will frequently be granted full control over that address space, with ini-
tial capabilities that allow it to derive any required code, data, and object capabilities it
might require. This notion of privilege is fully captured by the capability model, and no
recourse is required to a lower ring as part of privilege management in this sense. This
approach follows the spirit of Paul Karger’s paper on limiting the damage potential of
discretionary Trojan horses [43], and extends it further. Certain operations, such as do-
main transition, do employ the ring mechanism, in order to represent controlled privilege
escalation – e.g., via the object-capability call and return instructions.

These models can be composed in a variety of ways. For example, if a compartmental-
ization model is implemented in userspace over a hybrid kernel, the kernel might choose to
accept system calls only from suitably privileged compartments within userspace – such as
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by requiring those compartments to have a specific software-defined permission set on their
program-counter capability.

3.5.7 Traps, Interrupts, and Exception Handling
As in MIPS, traps and interrupts remain the means by which ring transitions are triggered in
CHERI. They are affected in a number of ways by the introduction of capability features:

New exceptions New exception opportunities are introduced for both existing and new in-
structions, which may trap if insufficient rights are held, or an invalid operation is requested.
For example, attempts to read a capability from memory using a capability without the read
capability permission will trigger a trap.

Reserved capability registers for exception handling New exception-handling functional-
ity is required to ensure that exception handlers themselves can execute properly. We reserve
several capability registers for both use by the exception-handling mechanism itself (describ-
ing the rights that the exception handler will run with) and use by software exception handlers
(a pair of reserved registers that can be used safely during context switching). This approach
is not dissimilar from the current notion of exception-handling registers in the MIPS ABI,
which reserves two general-purpose registers for this purpose. However, whereas the MIPS
ABI simply dictates that user code cannot rely on the two reserved exception registers being
preserved, CHERI requires that access is blocked, as capability registers delegate rights and
also hold data. We currently grant access to exception-related capability registers by virtue of
special permission bits on the capability that describe the currently executing code; attempting
to access reserved registers without suitable permission will trigger an exception.

Saved program-counter capability Exception handlers must also be able to inspect excep-
tion state; for example, as PC, the program counter, is preserved today in a control register,
The program counter capability EPC must be preserved as EPCC so that it can be queried.

Implications for pipelining Another area of concern in the implementation is the interaction
between capability registers and pipelining. Normally, writing to TLB control registers in CP0
occurs only in privileged rings, and the MIPS ISA specifies that a number of no-op instructions
follow TLB register writes in order to flush the pipeline of any inconsistent or intermediate
results. Capability registers, on the other hand, may be modified from unprivileged code, which
cannot be relied upon to issue the required no-ops. This case can be handled through the
squashing of in-flight instructions, which may add complexity to pipeline processing, but is
required to avoid the potential for serious vulnerabilities.

3.5.8 Tagged Memory
As with general-purpose registers, storing capability register values in memory is desirable
– for example, to push capabilities onto the stack, or manipulate arrays of capabilities. To
this end, each capability-aligned and capability-sized word in memory has an additional tag
bit. The bit is set whenever a capability is atomically written from a register to an authorized
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memory location, and cleared if a write occurs to any byte in the word using a general-purpose
store instruction. Capabilities may be read only from capability-aligned words, and only if the
tag bit is set at the moment of load; otherwise, a capability load exception is thrown. Tags
are associated with physical memory locations, rather than virtual ones, such that the same
memory mapped at multiple points in the address space, or in different address spaces, will
have the same tags.

Tags require strong coherency with the data they protect, and it is expected that tags will be
cached with the memory they describe within the cache hierarchy. Strong atomicity properties
are required such that it is not possible to partially overwrite a capability value in memory while
retaining the tag. This provides a set of properties that falls out naturally from current coherent
memory-subsystem designs.

Additional bits are present in TLB entries to indicate whether a given memory page is con-
figured to have capabilities loaded or stored for the pertinent address space identifier (ASID).
For example, this allows the kernel to set up data sharing between two address spaces without
permitting capability sharing (which, as capability interpretation is scoped to address spaces,
might lead to undesirable security or programmability properties). Special instructions allow
the supervisor to efficiently extract and set tag bits for ranges of words within a page for the pur-
pose of more easily implemented paging of capability memory pages. Use of these instructions
is conditioned on notions of ring and capability context privilege.

3.5.9 Capability Instructions
Various newly added instructions are documented in detail in Chapter 4. Briefly, these in-
structions are used to load and store via capabilities, load and store capabilities themselves,
manage capability fields, invoke object capabilities, and create capabilities. Where possible,
the structure and semantics of capability instructions have been aligned with similar core MIPS
instructions, similar calling conventions, and so on. The number of instructions has also been
minimized to the extent possible.

3.5.10 Object Capabilities
As noted above, the CHERI design calls for two forms of capabilities: capabilities that describe
regions of memory and offer bounded-buffer “segment” semantics, and object capabilities that
permit the implementation of protected subsystems. In our model, object capabilities are repre-
sented by a pair of sealed code and data capabilities, which provide the necessary information
to implement a protected subsystem domain transition. Object capabilities are “invoked” using
the CCall instruction (which is responsible for unsealing the capabilities, performing a safe
security-domain transition, and argument passing), followed by CReturn (which reverses this
process and handles return values).

In traditional capability designs, invocation of an object capability triggered microcode
responsible for state management. Initially, we implemented CCall and CReturn as software
exception handlers in the kernel, but are now exploring optimizations in which CCall and
CReturn perform a number of checks and transformations to minimize software overhead. In
the longer term, we hope to investigate the congruence of object-capability invocation with
message-passing primitives between architectural threads: if each register context represents a
security domain, and one domain invokes a service offered by another domain, passing a small
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number of general-purpose and capability registers, then message passing may offer a way to
provide significantly enhanced performance.5 In this view, architectural thread contexts, or
register files, are simply caches of thread state to be managed by the processor.

Significant questions then arise regarding rendezvous: how can messages be constrained so
that they are delivered only as required, and what are the interactions regarding scheduling?
While this structure might appear more efficient than a TLB (by virtue of not requiring objects
with multiple names to appear multiple times), it still requires an efficient lookup structure
(such as a TCAM).

In either instantiation, a number of design challenges arise. How can we ensure safe in-
vocation and return behavior? How can callers safely delegate arguments by reference for
the duration of the call to bound the period of retention of a capability by a callee (which is
particularly important if arguments from the call stack are passed by reference)?

How should stacks themselves be handled in this light, since a single logical stack will
arguably be reused by many different security domains, and it is undesirable that one domain
in execution might ‘pop’ rights from another domain off of the stack, or reuse a capability to
access memory previously used as a call-by-reference argument.

These concerns argue for at least three features: a logical stack spanning many stack frag-
ments bound to individual security domains, a fresh source of ephemeral stacks ready for reuse,
and some notion of a do-not-transfer facility in order to prevent the further propagation of
a capability (perhaps implemented via a revocation mechanism, but other options are read-
ily apparent). PSOS explored similar notions of propagation-limited capabilities with similar
motivations.

Our current software CCall/CReturn maintains a ‘trusted stack’ in the kernel address
space and provides for reliable return, but it is clear that further exploration is required. Our
goal is to support many different semantics as required by different programming languages,
from an enhanced C language to Java. By adopting a RISC-like approach, in which traps
to a lower ring occur when architecture-supported semantics is exceeded, we will be able to
supplement the architectural model through modifications to the supervisor.

3.5.11 Peripheral Devices

As described in this chapter, our capability model is a property of the instruction-set architec-
ture of a CHERI CPU, and imposed on code executing on the CPU. However, in most computer
systems, Direct Memory Access (DMA) is used by peripheral devices to transfer data into and
out of system memory without explicit instruction execution for each byte transferred: device
drivers configure and start DMA using control registers, and then await completion notification
through an interrupt or by polling. Used in isolation, nothing about the CHERI ISA implies
that device memory access would be constrained by capabilities.

This raises a number of interesting questions. Should DMA be forced to pass through the
capability equivalent of an I/O MMU in order to be appropriately constrained? How might
this change the interface to peripheral devices, which currently assume that physical addresses

5This appears to be another instance of the isomorphism between explicit message passing and shared memory
design. If we introduce hardware message passing, then it will in fact blend aspects of both models and use the
explicit message-passing primitive to cleanly isolate the two contexts, while still allowing shared arguments using
pointers to common storage, or delegation using explicit capabilities. This approach would allow application
developers additional flexibility for optimization.
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are passed to them? Certainly, reuse of current peripheral networking and video devices with
CHERI CPUs while maintaining desired security properties is desirable.

For the time being, device drivers continue to hold the privilege for DMA to use arbitrary
physical memory addresses, although hybrid models – such as allowing DMA access only to
specific portions of physical memory – may prove appropriate. Similar problems have plagued
virtualization in commodity CPUs, where guest operating systems require DMA memory per-
formance but cannot be allowed arbitrary access to physical memory. Exploring I/O MMU-like
models and their integration with capabilities is high on our todo list; one thing is certain, how-
ever: a combination of hardware- and software-provided cache and memory management must
ensure that tags are suitably cleared when capability-oblivious devices write to memory, in
order to avoid violation of capability integrity properties.

In the longer term, one quite interesting idea is embedding CHERI support in peripheral
devices themselves, to require the device to implement a CHERI-aware TCB that would syn-
chronize protection information with the host OS. This type of model appeals to ideas from
heterogeneous computing, and is one we hope to explore in greater detail in the future. This
will require significant thinking on both how CHERI protection applies to other computation
models, and also how capability state (e.g., the tag bit and its implied atomicity) will be exposed
via the bus architecture.

3.6 Deep Versus Surface Design Choices
In adapting an ISA to implement the CHERI protection model, there are both deeper design
choices (e.g., to employ tagged memory and registers) that might span multiple possible appli-
cations to an ISA, and more surface design choices reflecting the specific possible integrations
(e.g., the number of capability registers). Further, applications to an ISA are necessarily sensi-
tive to existing choices in the ISA – for example, whether and how page tables are represented
in the instruction set, and the means by which exception delivery takes place. In general, the
following aspects of CHERI are fundamental design decisions that it is desirable to retain in
applying CHERI concepts in any ISA:

• Capabilities can be used to implement pointers into virtual address spaces;

• Tags on registers determine whether they are valid pointers for loading, fetching, or jump-
ing to;

• Tagged registers can contain both data and capabilities, allowing (for example) capability-
oblivious memory copies;

• Tags on pointer-sized, pointer-aligned units of memory preserve validity (or invalidity)
across loads and stores to memory;

• Tags are associated with physical memory locations – i.e., if the same physical memory
is mapped at two different virtual addresses, the same tags will be used;

• Attempts to store data into memory that has a valid tag will atomically clear the tag;

• Capability loads and stores to memory offer strong atomicity with respect to capability
values and tags preventing race conditions that might yield combinations of different
capability values, or the tag remaining set when a corrupted capability is reloaded;
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• Pointers are extended to include bounds and permissions; the “pointer” is able to float
freely within (and to varying extents, beyond) the bounds;

• Permissions are sufficient to control both data and control-flow operations;

• Guarded manipulation implements monotonicity: rights can be reduced but not increased
through valid manipulations of pointers;

• Invalid manipulations of pointers violating guarded-manipulation rules lead to an ex-
ception or clearing of the valid tag, whether in a register or in memory, with suitable
atomicity;

• Loads via, stores via, and jumps to capabilites are constrained by their permissions and
bounds, throwing exceptions on a violation;

• Capability exceptions, in general, are delivered with greater priority than MMU excep-
tions;

• Permissions on capabilities include the ability to not just control loading and storing of
data, but also loading and storing of capabilities;

• Capability-unaware loads, stores, and jump operations via integer pointers are constrained
by implied capabilities such as the Default Data Capability and Program Counter Capa-
bility, ensuring that legacy code is constrained;

• If present, the Memory Management Unit (MMU), whether through extensions to software-
managed Translation Lookaside Buffers (TLBs), or via page-table extensions for hardware-
managed TLBs, contains additional permissions controlling the loading and storing of
capabilities;

• Strong C-language compatibility is maintained through definitions of NULL to be un-
tagged, zero-filled memory, instructions to convert between capabilities and integer point-
ers, and instructions providing C-compatible equality operators;

• Reserved capabilities, whether in special registers or within a capability register file,
allow a software supervisor to operate with greater rights than non-supervisor code, re-
covering those rights on exception delivery;

• A simple capability control-flow model to allow the propagation of capabilities to be
constrained;

• Sealed capabilities allow software-defined behaviors to be implemented, along with suit-
able instructions to (with appropriate authorization) seal and unseal capabilities based on
permissions and object types;

• By clearing architecture-defined permissions, and utilizing software-defined permissions,
capabilities can be used to represent spaces other than the virtual address space;

• For compressed capabilities, pointers can stray well out-of-bounds without becoming
unrepresentable;
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• For compressed capabilities, alignment requirements do not restrict common object sizes
and do not restrict large objects beyond common limitations of allocators and virtual
memory mapping; and

• That through inductive properties of the instruction set, from the point of CPU reset, via
guarded manipulation, and suitable firmware and software management, it is not possible
to “forge” capabilities or otherwise escalate privilege other than as described by this
model and explicit exercise of privilege (e.g., via saved exception-handler capabilities,
unsealing, etc).

The following design choices are associated with our specific integration of the CHERI
model into the 64-bit MIPS ISA, and might be revisited in various forms in integrating CHERI
support into other ISAs (or even with MIPS):

• Whether capability registers are in their own register file, or extended versions of existing
general-purpose registers, as long as tags are used to control dereferencing capabilities;

• The number of capability registers present;

• How capability-related permissions on MMU pages are indicated;

• How capabilities representing escalated privilege for exception handlers are stored;

• Whether specific capability-related failures (in particular, operations violating guarded
manipulation) lead to an immediate exception, or simply clearing of the tag and a later
exception on use;

• How tags are stored in the memory subsystem – e.g., whether close to the DRAM they
protect or in a partition of memory – as long as they are presented with suitable protec-
tions and atomicity up the memory hierarchy;

• How the instruction-set opcode space is utilized – e.g., via coprocessor reservations in
the opcode space, reuse of existing instructions controlled by a mode, etc; and

• What addressing modes are supported by instructions – e.g., whether instructions accept
only a capability operand as the base address, perhaps with immediates, or whether they
also accept integer operands via non-capability (or untagged) registers;

• How capabilities are represented microarchitecturally – e.g., compressed or decompressed
if compression is used; if the base and offset are stored pre-computed as a cursor rather
than requiring additional arithmetic on dereference; or whether an object-type field is
present for non-sealed in-memory representations.
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Chapter 4

The CHERI-MIPS Instruction-Set
Architecture

CHERI-MIPS extends the 64-bit MIPS ISA to implement the CHERI protection model. New
capability-aware instructions are implemented as a MIPS coprocessor – coprocessor 2 – an
encoding space reserved for ISA extensions. In addition to adding new instructions, CHERI-
MIPS relies on tagged physical memory, and modifies a number of 64-bit MIPS behaviors –
notably, instruction fetch, load and store instructions, the TLB, and exception handling. This
chapter specifies the following aspects of CHERI-MIPS:

• Architectural capabilities

• The capability register file

• Tagged physical memory

• Capability-aware instructions

• Capability state on CPU reset

• Exception handling and capability exceptions

• Protection-domain transition

• Extensions to MIPS ISA processing

• 256-bit and 128-bit in-memory formats for capabilities

The chapter finishes with a discussion of potential future directions for the CHERI-MIPS ISA.
Detailed descriptions of specific capability-aware instructions can be found in Chapter 5.

4.1 Architectural Capabilities
Capabilities may be held in capability registers or in tagged memory. When capabilities are
held in registers, their fields may be moved to or from general-purpose registers (subject to
architectural constraints on capability derivation, such as monotonicity):

• Tag bit (“tag”, 1 bit)
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• Sealed bit (“s”, 1 bit)

• Permissions mask (“perms”)

• User-defined permissions mask (“uperms”)

• Object type (“otype”, 24 bits)

• Offset (“offset”, 64 bits)

• Base virtual address (“base”, 64 bits)

• Length in bytes (“length”, 64 bits)

A capability in a register or memory can be in one of four possible states:

• It contains a valid capability. The tag bit is set, and all of the above fields contain defined
values.

• It contains all of the fields of a capability (as defined above), but the capability is not valid
for use (for example, because the program that set the values has not yet demonstrated
that it is authorized to create a valid capability with those values). The tag bit is not set.

• It contains a 64-bit integer stored in the offset field. The tag bit is not set, and the offset
field contains the integer.

• It contains N bits of non-capability data that have been loaded from memory. (Where
N is the size of a capability, 256 bits for the 256-bit representation, or 128 bits for the
128-bit representation). The tag bit is not set. Programs should not rely on there being
any particular relationship between the bytes that have been loaded from memory and the
offset field, although see below for the current in-memory representation of capabilities.

The CHERI-MIPS ISA can be implemented with several different in-memory representa-
tions of capabilities. A 256-bit format is described in Section 4.10. A 128-bit compressed
format is described in Section 4.11.

4.1.1 Tag Bit
The tag bit indicates whether a capability register or a capability-sized, capability aligned lo-
cation in physical memory contains a capability or normal data. If tag is set, the capability is
valid. If tag is cleared, the remainder contains 256 (or 128) bits of normal data.

4.1.2 Sealed Bit
The s flag indicates whether a capability is usable for general-purpose capability operations. If
this flag is set, the capability is sealed, causing it to become non-dereferenceable (i.e., cannot
be used for load, store, or instruction fetch) and immutable (i.e., whose fields cannot be manip-
ulated). Capabilities are sealed with an object type (see Section 4.1.5); the sealed bit may be
removed only using the CUnseal or CCall instructions (see Section 4.8).
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4.1.3 Permission Bits

The perms bit vector governs the permissions of the capability including read, write and ex-
ecute permissions. Bits 0–7 and 10 of this field, which control use and propagation of the
capability, and also limit access to exception-handling features, are described in Table 4.1.

4.1.4 User-Defined Permission Bits

The uperms bit vector may be used by the kernel or application programs for user-defined per-
missions. They can be masked and retrieved using the same CAndPerm and CGetPerm instruc-
tions that operate on hardware-defined permissions, and also checked using the CCheckPerm
instruction. When using 256-bit capabilities, 20 user-defined permission bits are available; with
128-bit capabilities, 4 user-defined permission bits are available.

User-defined permission bits can be used in combination with existing hardware-defined
permissions (e.g., to annotate code or data capabilities with further software-defined rights), or
in isolation of them (with all hardware-defined permissions cleared, giving the capability only
software-defined functionality). For example, user-defined permissions on code capabilities
could be employed by a userspace runtime to allow the kernel to determine whether a partic-
ular piece of user code is authorized to perform system calls. Similarly, user permissions on
sealed data capabilities might authorize use of specific methods (or sets of methods) on object
capabilities, allowing different references to objects to authorize different software-defined be-
haviors. By clearing all hardware-defined permissions, software-defined capabilities might be
used as unforgeable tokens authorizing use of in-application or kernel services.

4.1.5 Object Type

Th 24-bit otype field holds the “type” of a sealed capability; this field allows an unforgeable
link to be created between associated sealed code and data capabilities. While earlier versions
of the CHERI-MIPS ISA interpreted this field as an address, recent versions treat this as an
opaque software-managed value.

4.1.6 Offset

The 64-bit offset field holds an offset between the base of the capability and a byte of memory
that is currently of interest to the program that created the capability. Effectively, it is a con-
venient place for a program to take an index into an array and store it inside a capability that
grants access to the array. No bounds checks are performed on offset when its value is set by
the CSetOffset instruction: programs are free to set its value beyond the end of the capability
as defined by the length field. (Bounds checks are, however, performed when a program at-
tempts to use the capability to access memory at the address given by base + offset + register
offset.)

4.1.7 Base

The 64-bit base field is the base virtual address of the segment described by a capability.
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Value Name

0 Global
1 Permit Execute
2 Permit Load
3 Permit Store
4 Permit Load Capability
5 Permit Store Capability
6 Permit Store Local Capability
7 Permit Seal
8 Permit CCall
9 reserved
10 Access System Registers

Table 4.1: Memory permission bits for the perms capability field

4.1.8 Length
The 64-bit length field is the length of the segment described by a capability.

4.2 Capability Permissions
Table 4.1 shows the definition of bits 0–7 of the perms field.

Global Allow this capability to be stored via capabilities that do not themselves have
Permit Store Local Capability set.

Permit Execute Allow this capability to be used in the PCC register as a capability for the
program counter.

Permit Store Capability Allow this capability to be used as a pointer for storing other capa-
bilities.

Permit Load Capability Allow this capability to be used as a pointer for loading other capa-
bilities.

Permit Store Allow this capability to be used as a pointer for storing data from general-
purpose registers.

Permit Load Allow this capability to be used as a pointer for loading data into general-
purpose registers.

Permit Store Local Capability Allow this capability to be used as a pointer for storing local
capabilities.

Permit Seal Allow this capability to be used to seal or unseal capabilities that have the same
otype.
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Permit CCall Allow this capability to be used with a “direct” CCall (i.e., without passing
through a software exception handler).

The Permit Store Local Capability permission bit is used to limit capability propagation
via software-defined policies: local capabilities (i.e., those without the Global permission set)
can be stored only via capabilities that have Permit Store Local Capability set. Normally, this
permission will be set only on capabilities that, themselves, have the Global bit cleared. This
allows higher-level, software-defined policies, such as “Disallow storing stack references to
heap memory” or “Disallow passing local capabilities via cross-domain procedure calls,” to be
implemented. We anticipate both generalizing and extending this model in the future in order to
support more complex policies – e.g., relating to the propagation of garbage-collected pointers,
or pointers to volatile vs. non-volatile memory.

In general, permissions on a capability relate to its implicit or explicit use in authorizing an
instruction – e.g., in fetching the instruction via PCC, branching to a code capability, loading
or storing explicitly via a data capability, performing sealing operations, or controlling propa-
gation. In addition, a further privileged permission controls access to privileged aspects of the
instruction set such as exception-handling, which are key to the security of the model and yet
do fit the “capability as an operand” model:

Access System Registers Allow access to EPCC, KDC, KCC, KR1C, KR2C and capcause
when this capability is in PCC. Also authorizes access to kernel features such as the
TLB, CP0 registers, and system-call return (see Section 4.9).

4.3 The Capability Register File
In CHERI-MIPS, the capability register file is distinct from the general-purpose register file.
Table 4.3 illustrates capability registers defined by the capability coprocessor. CHERI-MIPS
defines 28 general-purpose capability registers, which may be named using most capability
register instructions. These registers are intended to hold the working set of rights required
by in-execution code, intermediate values used in constructing new capabilities, and copies of
capabilities retrieved from EPCC and PCC as part of the normal flow of code execution, which
is congruent with current MIPS-ISA exception handling via coprocessor 0. Four capability
registers have special functions and are accessible only if allowed by the permissions field C0.
Note that C0 and C26 (IDC) also have hardware-specific functions, but are otherwise general-
purpose capability registers.

Each capability register also has an associated tag indicating whether it currently contains
a valid capability. Any load, store, or instruction fetch via an invalid capability will trap.

4.3.1 Capability Register Conventions / Application Binary Interface (ABI)
We are developing a set of ABI conventions regarding use of the other software-managed ca-
pability registers similar to those for general-purpose registers: caller-save, callee-save, a stack
capability register, etc. Code can be compiled using a number of ABIs:

MIPS ABI The MIPS n64 ABI: capability registers and capability instructions are unused.
Generated code relies on MIPS compatibility features to interpret pointers with respect
to the program-counter and default-data capabilities.
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Register(s) Description

PCC Program counter capability (PCC): the capability through which
PC is indirected by the processor when fetching instructions.

DDC (C0) Capability register through which all non-capability load and
store instructions are indirected. This allows legacy MIPS code
to be controlled using the capability coprocessor.

C1...C25 General-purpose capability registers referenced explicitly by
capability-aware instructions.

IDC (C26) Invoked data capability: the capability that was unsealed at the
last protected procedure call. This capability holds the unlimited
capability at boot time.

KR1C (C27) A capability reserved for use during kernel exception handling.
KR2C (C28) A capability reserved for use during kernel exception handling.
KCC (C29) Kernel code capability: the code capability moved to PCC when

entering the kernel for exception handling.
KDC (C30) Kernel data capability: the data capability containing the security

domain for the kernel exception handler.
EPCC (C31) Capability register associated with the exception program counter

(EPC) required by exception handlers to save, interpret, and store
the value of PCC at the time the exception fired.

Table 4.2: Capability registers defined by the capability coprocessor.
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Hybrid ABI Capability-aware code makes selective use of capability registers and instruc-
tions, but can transparently interoperate with MIPS-ABI code when capability arguments
or return values are unused. The programmer may annotate pointers or types to indicate
that data pointers should be implemented in terms of capabilities; the compiler and linker
may be able utilize capabilities in further circumstances, such as for pointers that do not
escape a scope, or are known to pass to other hybrid code. They may also use capa-
bilities for other addresses or values used in generated code, such as to protect return
addresses or for on-stack canaries. The goal of this ABI is binary compatibility with,
where requested by the programmer, additional protection. This is used within hybrid
applications or libraries to provide selective protection for key allocations or memory
types, as well as interoperability with pure-capability compartments.

Pure-Capability ABI Capabilities are used for all language-level pointers, but also underlying
addresses in the run-time environment, such as return addresses. The goal of this ABI
is strong protection at significant cost to binary interoperability. This is used for both
compartmentalized code, and also pure-capability (“CheriABI”) applications.

All ABIs implement the following capability register reservations for calls within a protec-
tion domain (i.e., ordinary jump-and-link-register / return instructions):

• C1–C2 are caller-save. During a cross-domain call, these are used to pass the PCC and
IDC values, respectively. In the invoked context, they are always available as tempo-
raries, irrespective of whether the function was invoked as the result of a cross-domain
call.

• C3–C10 are used to pass arguments and are not preserved across calls.

• C11–C16 and C25 are caller-save registers.

• C17–C24 are callee-save registers.

In all ABIs, the following convention also applies:

• C3 optionally contains a capability returned to a caller (congruent to MIPS $v0, $v1).

The pure-capability ABI, used within compartments or for pure-capability (“CheriABI“) appli-
cations, implements the following further conventions for capability use:

• C11, in the pure-capability ABI, contains the stack capability (congruent to MIPS $sp).

• C12, in the pure-capability ABI, contains the jump register (congruent to MIPS $t9).

• C17, in the pure-capability ABI, contains the link register (congruent to MIPS $ra).

When calling (or being called) across protection domains, there is no guarantee that a non-
malicious caller or callee will abide by these conventions. Thus, all registers should be re-
garded as caller-save, and callees cannot depend on caller-set capabilities for the stack and
jump registers. Additionally, all capability registers that are not part of the explicit argument or
return-value sets should be cleared via explicit assignment or via the CClearHi and CClearLo
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instructions. This will prevent leakage of rights to untrustworthy callers or callees, as well as
accidental use (e.g., due to a compiler bug). Where rights are explicitly passed between do-
mains, it may be desirable to clear the global bit that will (in a suitably configured runtime)
limit further propagation of the capability. Similar concerns apply to general-purpose regis-
ters, or capability registers holding data, which should be preserved by the caller if their cor-
rect preservation is important, and cleared by the caller or callee if they might leak sensitive
data. Optimized clearing instructions ClearHi and ClearLo are available to efficiently clear
general-purpose registers.

4.4 Tagged Physical Memory
CHERI-MIPS relies on tagged physical memory: the association of a 1-bit tag with each
capability-sized, capability-aligned location in physical memory. Non-capability stores (i.e.,
stores of bytes, half words, words, and double words) implicitly (and atomically) clear the
tag(s) in the destination physical memory locations. Capability loads propagate the tag on the
source memory location into the destination capability register atomically with the load. Capa-
bility stores propagate the tag on the source capability register into the target memory location
atomically with the store. These strong atomicity properties ensure that tag bits are set only
on capability values that have valid provenance – i.e., that have not been corrupted due to data
stores into their contents, or undergone non-monotonic transformations. Our use of atomicity,
in this context, has primarily to do with the visibility of partial or interleaved results (which
must not occur for capability stores or tag clearing during data overwrite, or there is a risk
that corrupted capabilities might be dereferenceable), rather than ordering or visibility progress
guarantees (where we accept the memory model of the host architecture). Associating tags with
physical memory ensures that if memory is mapped multiple virtual addresses, the same tags
will be loaded and stored regardless of the virtual address through which it is accessed.

4.5 Capability-Aware Instructions
CHERI-MIPS introduces several new classes of instructions to the 64-bit MIPS ISA. In some
cases these are congruent to similar instructions relating to general-purpose integer registers,
control flow manipulation, and memory accesses, in the form of capability register manipu-
lation, jumps to capabilities, and capability-relative memory accesses. Others are specific to
CHERI, such as those manipulating capability fields, and those relating to protection-domain
transition. The semantics of these instructions implements many aspects of the protection
model; for example, constraints on permission and bounds manipulation in capability field
manipulation instructions contribute to enforcing CHERI’s capability monotonicity properties.
These instructions are described in detail in Chapter 5:

Retrieve capability fields These instructions extract specific capability-register fields and move
their values into general-purpose (integer) registers: CGetBase, CGetOffset, CGetLen,
CGetTag, CGetSealed, CGetPerm, and CGetType

Manipulate capability fields These instructions modify capability-register fields, setting them
to values moved from integer registers, subject to constraints such as monotonicity and
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representability: CClearRegs, CIncOffset, CSetBounds, CSetBoundsExact, CAndPerm,
and CSetOffset.

Conditional move The CMovN and CMovZ instructions conditionally move a capability from
one register to another, permitting conditional behavior without the use of branches.

Derive integer pointers from capabilities, or capabilities from integer pointers The CToPtr
and CFromPtr instructions efficiently convert between integer pointers and capabilities,
perorming suitable bounds checks against contextual capabilities. These support efficient
hybrid code, in which use of integer pointers and capabilities are intermixed.

Capability pointer instructions These instructions provide C-language-centric pointer com-
parison and subtraction behavior: CPtrCmp and CSub.

Load or store via a capability These instructions access memory indirected via an explic-
itly named capability register, and include a full range of access sizes (byte, half word,
word, double word, capability), optional sign extension for loads, and load-linked/store-
conditional variations to implement atomic operations: CL[BHWDC][U], CS[BHWDC],
CLL[BHWDC], and CSC[BHWDC]. These correspond in semantics to the similar MIPS
instructions, but are constrained by the properties of the named capability including per-
missions, bounds, validity, and so on; if capability protections would be violated, then an
exception will be thrown. Capability restrictions can be used to implement spatial safety
via permissions and bounds.

Retrieve program-counter capability These instructions retrieve the architectural program-
counter capability, and optionally modify its offset for the purposes of PCC-relative ad-
dressing: CGetPCC and CGetPCCSetOffset.

Capability jumps These instructions jump to an explicitly named capability register, setting
the program-counter capability to the value of the capability operand: CJR and CJALR.
These correspond in semantics to the MIPS JR jump, used for function returns, and
JALR, used for function calls, but constrained by the properties of the named capability
including permissions, bounds, validity, and so on. Capability-based code pointers allow
the implementation of control-flow robustness by limiting the permissions and bounds
on jump targets (e.g., preventing store, and limiting fetchable instructions).

Branch on capability fields These instructions branch within the current program-counter ca-
pability (i.e., to an immediate relative to the current program counter) dependent on ca-
pability tags: CBTU and CBTS.

Capability checks The CCheckPerm and CCheckType instructions compare capability fields
with expected permissions and types, throwing an exception if they do not match. These
are used to validate arguments on entry to protected subsystem.

Capability sealing The CSeal and CUnseal instructions seal or unseal capabilities given a
suitable authorizing capability. Sealed capabilities allow software to implement encap-
sulation, such as is required for software compartmentalization.
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Protection-domain switching The CCall and CReturn instructions are primitives upon which
protection-domain switching can be implemented. Both instructions can be implemented
in terms of hardware-assisted exception handlers; CCall has a further jump-based se-
mantic that unseals its sealed code and data capability-register operands. Both calling
semantics allow software-controlled non-monotonicity by granting access to additional
state via exception-handler registers or unsealing.

Fast register clear The CClearReg instruction clears a range of capability, general-purpose,
or floating-point registers to support fast protection-domain transition.

Exception handling The CGetCause and CSetCause instructions retrieve and manipulate
capability-related exception state, such as the cause of the current exception.

4.6 Capability State on CPU Reset

When the CPU is hard reset, all capability registers will be initialized to the following values:

• The tag bit is set.

• The s bit is unset.

• offset = 0 (except for PCC.offset, which will be initialized to the boot vector address)

• base = 0

• length = 264 − 1

• otype = 0

• All available permission bits are set. When the 256-bit capability representation is used,
31 permission bits are available, including 20 user-defined permissions. When the 128-
bit capability representation is used, 15 permission bits are available, including 4 user-
defined permissions. User-defined permissions bits that are not available are set to zero.
Permission bits 8 and 9 are currently reserved for future use; these are included in the the
31 (or 15) permission bits that are set on reset).

• All unused bits are cleared.

The initial values of PCC and KCC will allow the system to initially execute code relative to
virtual address 0. The initial value of DDC will allow general-purpose loads and stores to all
of virtual memory for the bootstrapping process.

In our CHERI-MIPS hardware prototype, all tags in physical memory are initialized to 0,
ensuring that there are no valid capabilities in memory on reset. This is not strictly required:
the firmware, hypervisor, or operating system can in principle ensure that tags are cleared on
memory before it is exposed to untrustworthy software, in much the same way that they will
normally ensure that memory is cleared to prevent data leaks before memory reuse.
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Figure 4.1: Capability Cause Register

4.7 Exception Handling

MIPS exception handling transfers control to an exception vector and also grants supervision
privilege in the ring model. In CHERI-MIPS, KCC and KDC hold the code capability and
data capability that describe the protection domain of the system exception handler. When
an exception occurs, the victim PCC is copied to EPCC so that the exception may return to
the correct address, and KCC, excepting its offset field, which will be set to the appropriate
MIPS exception-vector address, is moved to PCC to grant execution rights for kernel code.
When an exception handler returns with ERET, EPCC, possibly after having been updated by
the software exception handler, is moved into PCC. KDC may be manually installed by the
exception handler if needed, and will typically be moved into DDC in order to allow otherwise
unmodified MIPS exception handlers to be used. This may also need to be restored before
returning from the exception.

4.7.1 Capability-Related Exceptions

Many of the capability instructions can cause an exception (e.g., if the program attempts a load
or a store that is not permitted by the capability system). When the cause of an exception is that
the attempted operation is prohibited by the capability system, the ExcCode field within the
cause register of coprocessor 0 are set to 18 (C2E, coprocessor 2 exception), PCC and EPCC
are set as described in Section 4.9 and capcause is set as described below.

Capability Cause Register

The capability coprocessor has a capcause register that gives additional information on the
reason for the exception. It is formatted as shown in Figure 4.1. The possible values for the
ExcCode of capcause are shown in Table 4.7.1. If the last instruction to throw an exception did
not throw a capability exception, then the ExcCode field of capcause will be None. ExcCode
values from 128 to 255 are reserved for use by application programs. (A program can use
CSetCause to set ExcCode to a user-defined value).

The RegNum field of capcause will hold the number of the capability register whose per-
mission was violated in the last exception, if this register was not the unnumbered register
PCC. If the capability exception was raised because PCC did not grant access to a numbered
reserved register, then capcause will contain the number of the reserved register to which ac-
cess was denied. If the exception was raised because PCC did not grant some other permission
(e.g., permission to read capcause was required, but not granted) then RegNum will hold 0xff.

The CGetCause instruction can be used by an exception handler to read the capcause
register. CGetCause will raise an exception if PCC.perms.Access System Registers is not set,
so the operating system can prevent user space programs from reading capcause directly by
not granting them Access System Registers permission.
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Value Description

0x00 None
0x01 Length Violation
0x02 Tag Violation
0x03 Seal Violation
0x04 Type Violation
0x05 Call Trap
0x06 Return Trap
0x07 Underflow of trusted system stack
0x08 User-defined Permission Violation
0x09 TLB prohibits store capability
0x0a Requested bounds cannot be represented exactly
0x0b reserved
0x0c reserved
0x0d reserved
0x0e reserved
0x0f reserved
0x10 Global Violation
0x11 Permit Execute Violation
0x12 Permit Load Violation
0x13 Permit Store Violation
0x14 Permit Load Capability Violation
0x15 Permit Store Capability Violation
0x16 Permit Store Local Capability Violation
0x17 Permit Seal Violation
0x18 Access System Registers Violation
0x19 Permit CCall Violation
0x1a reserved
0x1b reserved
0x1c reserved
0x1d reserved
0x1e reserved
0x1f reserved

Table 4.3: Capability Exception Codes
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Priority Description

1 Access System Registers Violation
2 Tag Violation
3 Seal Violation
4 Type Violation
5 Permit Seal Violation

Permit CCall Violation
6 Permit Execute Violation
7 Permit Load Violation

Permit Store Violation
8 Permit Load Capability Violation

Permit Store Capability Violation
9 Permit Store Local Capability Violation
10 Global Violation
11 Length Violation
12 Requested bounds cannot be represented exactly
13 User-defined Permission Violation
14 TLB prohibits store capability
15 Call Trap

Return Trap

Table 4.4: Exception Priority

Exception Priority

If an instruction throws more than one capability exception, capcause is set to the highest
priority exception (numerically lowest priority number) as shown in Table 4.4. The RegNum
field of capcause is set to the register which caused the highest priority exception.

All capability exceptions (C2E) have higher priority than address error exceptions (AdEL,
AdES).

If an instruction throws more than one capability exception with the same priority (e.g.,
both the source and destination register are reserved registers), then the register that is furthest
to the left in the assembly language opcode has priority for setting the RegNum field.

Some of these priority rules are security critical. In particular, an exception caused by a
register being reserved must have priority over other capability exceptions (e.g., AdEL and
AdES) to prevent a process from discovering information about the contents of a register that
it is not allowed to access.

Other priority rules are not security critical, but are defined by this specification so that
exception processing is deterministic.

An operating system might implement unaligned loads and stores by catching the AdEL and
AdES exceptions and emulating the load or store. As capability exceptions have higher priority
than alignment exceptions, this exception handler would not need to check the permissions
(and base, length, etc.) of the capability before emulating the load/store, because it would be
guaranteed that all capability checks had already been done by the hardware, and had passed.
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Exceptions and Indirect Addressing

If an exception is caused by the combination of the values of a capability register and a general-
purpose register (e.g., if an expression such as clb t1, t0(c0) raises an exception because
the offset t0 is trying to read beyond c0’s length), the number of the capability register (not of
the general-purpose register) will be stored in capcause.RegNum.

4.8 Protection-Domain Transition with CCall and CReturn
Cross-domain procedure calls are implemented using the CCall instruction, which provides
access to controlled non-monotonicity for the purposes of a privileged capability register-file
transformation and memory access. The instruction accepts two capability-register operands,
which represent the sealed code and data capability describing a target protection domain.
CCall checks that the two capabilities are valid, that both are sealed, that the code capability
is executable, that the data capability is non-executable, and that they have a matching object
type. In addition to a pair of sealed capability-register operands, CCall accepts a selector
operand that determines which of two domain-transition semantics will be used:

Selector 0 - exception-handler semantics In this semantic, an exception is thrown, with con-
trol transferred to the kernel code capability for the purposes of any required capability
register-file and memory accesses. For example, the operating-system kernel might im-
plement a “trusted stack” to track the “caller” PCC and IDC for the purposes of later
restoring control, and arrange for the sealed operand capabilities to be installed in PCC
and IDC on exception return via ERET. Other operations might include argument valida-
tion (e.g., to ensure that non-global capabilities are not passed across domain transitions),
or register clearing (e.g., to ensure that non-argument registers do not leak information
from the caller to the callee). A new dedicated exception vector is used, in a style similar
to the dedicated TLB miss exception vector on MIPS, so as to avoid overhead arising
from adding new code to existing exception vectors (see Section 4.8.1).

Selector 1 - jump-like semantics In this semantic, the sealed code and data capabilities are
unsealed by the instruction, and placed in PCC and IDC, with control transferred directly
to the target code capability. A programming-language or concurrent programming-
framework runtime might arrange that all sealed code capabilities point to a message-
passing implementation that proceeds to check argument registers or clear other registers,
switching directly to the target domain via a further CJR, or returning to the caller if the
message will be delivered asynchronously.

A further instruction CReturn is provided that triggers an exception in a similar manner
to CCall, but without capability operand checks. A different capability cause register value
allows software to distinguish CCall from CReturn.

Voluntary protection-domain crossing – i.e., not triggered by an interrupt – will typically
be modeled as a form of function invocation or message passing by the operating system. In
either case, it is important that function callers/callees, message senders/recipients, and the
operating system itself, be constructed to protect themselves from potential confidentiality of
integrity problems arising from leaked or improperly consumed general-purpose integer regis-
ters or capabilities passed across domain transition. On invocation, callers will wish to ensure
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that non-argument registers, as well as unused argument registers, are cleared. Callees will wish
to receive only expected argument registers. Similarly, on return, callees will wish to ensure
that non-return registers, as well as unused return registers, are cleared. Likewise, callers will
wish to receive back only expected return values. In practice, responsibility for this clearing lies
with multiple of the parties: for example, only the compiler may be aware of which argument
registers are unused for a particular function, whereas the operating system or message-passing
routine may be able to clear other registers. Work performed by the the operating system as a
trusted intermediary in a reliable way may be usefully depended on by either party in order to
prevent duplication of effort. For example, both caller and callee can rely on the OS to clear
non-argument registers on call, and non-return registers on return, allowing that clearing to
occur exactly once during in an exception handler (selector 0) or userspace message-passing
routine (selector 1). Efficient register clearing instructions (e.g., CClearRegs) can also be
used to substantially accelerate this process.

In CHERI, the semantics of secure message passing or invocation are software defined,
and we anticipate that different operating-system and programming-language security models
might handle these, and other behaviors, in different ways. For example, in our prototype
CheriBSD implementation, the operating-system kernel maintains a “trusted stack” onto which
values are pushed during invocation, and from which values are popped on return. Over time,
we anticipate providing multiple sets of semantics, perhaps corresponding to less synchronous
domain-transition models, and allowing different userspace runtimes to select (or implement)
the specific semantics their programming model requires. This is particularly important in
order to provide flexible error handling: if a sandbox suffers a fault, or exceeds its execution-
time budget, it is the OS and programming language that will define how recovery takes place,
rather than the ISA definition.

4.8.1 CCall Selector 0 and CReturn Exception Handling

CCall selector 0 and CReturn unconditionally throw exceptions when executed. However,
this can happen in one of two ways:

1. One of more checks performed by CCall on its sealed capability operands may fail,
causing a C2E exception to be thrown, a suitable capcause value for the error to be set,
and the general-purpose exception-handler vector to execute.

2. All checks performed by CCall or CReturn pass, causing a C2E exception to be thrown,
capcause to be set to Call Trap or Return Trap, and a dedicated protection-domain transi-
tion vector to execute. This vector is 0x100 above the general-purpose exception handler,
and as with the similar TLB miss vector, allows performance overhead to be minimized
through the use of a specialized fast-path exception handler.

The checks performed automatically by CCall allow software to avoid substantial overhead
on every transition, and include checking that tag bits, sealed bits, and object types of passed
code and data capabilities are suitable. If one or more checks fail, then a suitable exception code
for the failure, such as Tag Violation, Sealed Violation, or Type Violation, will be set instead.
This design balances a desire for a flexible software implementation with the performance
benefits of parallel checking in hardware.
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4.9 Changes to MIPS ISA Processing

The following changes are made to the behavior of instructions from the standard MIPS ISA
when a capability coprocessor is present:

Instruction fetch The MIPS-ISA program counter (PC) is extended to a full program-counter
capability (PCC), which incorporates the historic PC as PCC.offset. Instruction fetch is con-
trolled by the Permit Execute permission, as well as bounds checks, tag checks, and a require-
ment that the capability not be sealed. Failures will cause a coprocessor 2 exception (C2E)
to be thrown. If an exception occurs during instruction fetch (e.g., AdEL, or a TLB miss)
then BadVAddr is set equal to PCC.base + PCC.offset, providing the absolute virtual address
rather than a PCC-relative virtual address to the supervisor, avoiding the need for capability
awareness in TLB fault handling.

Load and Store instructions Standard MIPS load and store instructions are interposed on
by the default data capability, DDC. Addresses provided for load and store will be transformed
and bounds checked by DDC.base, DDC.offset, and DDC.length. DDC must have the appro-
priate permission (Permit Store or Permit Load) set, the full range of addresses covered by the
load or store must be in range, DDC.tag must be set, and DDC.s must not be set. Failures
will cause a coprocessor 2 exception (C2E) to be thrown. As with instruction fetch, BadVAddr
values provided to the supervisor will be absolute virtual addresses, avoiding the need for ca-
pability awareness in TLB fault handling.

Standard MIPS load and store instructions will raise an exception if the value loaded or
stored is larger than a byte, and the virtual address is not appropriately aligned. With the
capability coprocessor present, this alignment check is performed after adding DDC.base.
(DDC.base will typically be aligned, so the order in which the check is performed will of-
ten not be visible. In addition, CHERI1 can be built with an option to allow unaligned loads or
stores as long as they do not cross a cache line boundary).

Floating-point Load and Store instructions If the CPU is configured with a floating-point
unit, all loads and stores between the floating-point unit and memory are also relative to
DDC.base and DDC.offset, and are checked against the permissions, bounds, tag, and sealed
state of DDC.

Jump and link register After a jalr instruction, the return address is relative to PCC.base.

Exceptions The MIPS exception program counter (EPC) is extended to a full exception
program-counter capability (EPCC), which incorporates the historic EPC as EPCC.offset.
If an exception occurs while CP0.Status.EXL is false, PCC will be saved in EPCC and the
program counter will be saved in EPCC.offset and EPC. If CP0.Status.EXL is true, then
EPCC and EPC are unchanged. (In the MIPS ISA, exceptions leave EPC unchanged if
CP0.Status.EXL is true). Then the contents of the kernel code capability (KCC), excluding
KCC.offset, are moved into PCC. PC (and PCC.offset) will be set so that PCC.base + PC is
the exception vector address normally used by MIPS. This allows the exception handler to run
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with the permissions granted by KCC, which may be greater than the permissions granted by
PCC before the exception occurred.

If capability compression is being used (see Section 4.11), and the value of EPC is suf-
ficiently far outside the bounds of EPCC that a capability with those bounds and offset is
not representable (e.g., when the exception was caused by a branch far outside the range of
PCC), then EPCC.offset is set to EPC, EPCC.tag is cleared, EPCC.base is set to zero and
EPCC.length is set to zero.

On return from an exception (eret), PCC is restored from EPCC, which will include
EPCC.offset (also visible as EPC) 1 This allows exception handlers that are not aware of
capabilities to continue to work on a CPU with the CHERI-MIPS extensions. The result of
ERET is UNDEFINED if EPCC.tag is not set or EPCC.s is set. Similarly, the result of an
exception or interrupt is UNDEFINED if KCC.tag is not set or KCC.s is set.

CP0, TLB, CACHE, and ERET privileges The set of MIPS privileges normally reserved
for use only in kernel mode, including the ability to read and write CP0 control registers (using
MFC0, MTC0, DMFC0, and DMTC0), manage the TLB (using TLBR, TLBWI, TLBWR, and TLBP),
perform CACHE operations that could lead to data loss or rollback of stores, and use the ERET
exception-return instruction, is available only if PCC contains the Access System Registers
permission AND the CPU is running in kernel mode. This permits capability sandboxes to be
used in kernel mode by preventing them from being subverted using the TLB.

Other KSU-controlled mechanisms Despite the Access System Registers permission con-
trolling use of privileged ISA features, absence of the bit does not change the behavior of the
MIPS ISA with respect to other KSU/EXL-related mechanisms. For example, the value present
in the bit does not affect any of the following: selection of the TLB miss handler to use; the
KSU bits used to select the kernel, supervisor, or user virtual address space used in TLB lookup;
the KSU bits reported in the XContext register; or the automatic setting and clearing of the EXL
flag on exception entry and return. Memory capabilities are used to constrain the use of mem-
ory within kernel or supervisor compartments, rather than the ring-based MIPS segmentation
mechanism, which is unaffected by the Access System Registers permission.

4.9.1 Changes to the Translation Lookaside Buffer (TLB)
CHERI-MIPS adds two new fields to the EntryLo register, shown as L and S in Table 4.5, to
the conventional MIPS Translation Lookaside Buffer (TLB).

If L is set, capability loads are disabled for the page. If a CLC instruction is used on a page
with the L bit set, and the load succeeds, the value loaded into the destination register will have
its tag bit cleared, even if the tag bit was set in memory.

If S is set, capability stores are disabled for the page. If a CSC instruction is used on a
page with the S bit set, and the capability register to be stored has the tag bit set, then a CP2

1In our current CHERI1 prototype, for reasons of critical path length, EPCC.offset will be updated to be the
value of the MIPS EPC on exception entry, but writes to EPCC.offset will not be propagated to PCC.offset
on exception return. As described later in this chapter, we have proposed shifting EPCC out of the ordering
capability register file and instead using special registers in order to eliminate this problem. Our L3 formal model
of the CHERI-MIPS ISA implements the specified behavior. CheriBSD is able to operate on both as it is careful
to update both EPC and EPCC before returning.
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Figure 4.2: 256-bit memory representation of a capability

exception will be raised, with the CP2 cause register set to 0x9 (TLB prohibits store capability).
If the capability register to be stored does not have the tag bit set (i.e., it contains non-capability
data), then this exception will not be raised and the store will proceed.

At with other TLB-related exceptions, BadVAddr will be set to the absolute virtual address
that has triggered the fault.

4.10 256-bit Capability Format

A 256-bit format for representing capabilities is shown in Figure 4.2. This is the format that is
currently used by the 256-bit versions of the Bluespec implementation, the L3 formal model,
and the CHERI-enabled QEMU MIPS emulator. Programs should not rely on this memory
representation, as there are alternative capability representations (see, for example, the 128-bit
format in Section 4.11), and it may change in future. Instead, programs should access the fields
through the instructions provided in the ISA.

Note that there is a significant difference between the architecturally defined fields and the
in-memory representation: this format implements offset as cursor − base, where the cursor
field is internal to the implementation. These fields are stored in memory in a big-endian format.
The CHERI processor prototype is currently always defined to be big-endian, in contrast to the
traditional MIPS ISA, which allows endianness to be selected by the supervisor. This is not
fundamental to our approach; rather, it is expedient for early prototyping purposes.

In this representation, uperms is a 16 bit field and perms is 15-bit field.
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4.11 128-bit Capability Format

256-bit capabilities offer high levels of precision and software compatibility, but at a cost:
quadrupling the size of pointers. This has significant software and micro-architectural costs
to cache footprint, memory bandwidth, and also in terms of the widths of memory paths
in the design. However, the CHERI-MIPS ISA is designed to be largely agnostic to the
in-memory representation, permitting alternative “compressed” representations while retain-
ing largely compatible 256-bit software behavior. Compression is possible because the base,
length, and pointer values in capabilities are frequently redundant, which can be exploited by
increasing the alignment requirements on bounds associated with a pointer (while retaining full
precision for the pointer itself). Space can further be recovered by enforcing stronger alignment
requirements on sealed capabilities than for data capabilities (as only sealed capabilities require
an object type), and by reducing the number of permission and reserved bits.

Using this approach, it is possible to usefully represent capabilities via a compressed 128-bit
in-memory representation, while retaining a 256-bit architectural view. Compression results in
a loss of precision, exposed as a requirement for stronger bounds alignment, for larger memory
allocations. Because of the representation, we are able to vary the requirement for alignment
based on the size of the allocation, and for small allocations (< 3

4
MiB), impose no additional

alignment requirements. The design retains full monotonicity: no setting of bounds or adjust-
ment of the pointer value can cause bounds to increase, granting further rights – but care must
be taken to ensure that intended reductions in rights occur where desired. Some manipulations
of pointers could lead to unrepresentable bounds (as the bounds are no longer redundant to
content in the pointer): in this case, which occurs when pointers are moved substantially out of
bounds, the tag will be cleared preventing further dereferencing.

For bounds imposed by memory allocators, this is not a substantial cost: heap, stack, and
OS allocators already impose alignment in order to achieve natural word, pointer, page, or
superpage alignment in order to allow fields to be accessed and efficient utilization of virtual-
memory features in the architecture. For software authors wishing to impose narrower bounds
on arbitrary subsets of larger structures, the precision effects can become visible: it is no longer
possible to arbitrarily subset objects over the 3

4
MiB threshold without alignment adjustments

to bounds. This might occur, for example, if a programmer explicitly requested small and un-
aligned bounds within a much larger aligned allocation – such as might be the case for video
frame data within a 1GiB memory mapping. In such cases, care must be taken to ensure that
this cannot lead to buffer overflows with potential security consequences. Alignment require-
ments are further explored in section 4.11.4.

Different representations are used for unsealed data capabilities versus sealed capabilities
used for object-capability invocation. Data capabilities experience very high levels of precision
intended to support string subsetting operations on the stack, in-memory protocol parsing, and
image processing. Sealed capabilities require additional fields, such as the object type and
further permissions, but because they are unused by current software, and represent coarser-
grained uses of memory, greater alignment can be enforced in order to recover space for these
fields. Even stronger alignment requirements could be enforced for the default data capability
in order to avoid further arithmetic addition in the ordinary RISC load and store paths, where a
bitwise or, rather than addition, is possible due to zeroed lower bits in strongly aligned bounds.
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4.11.1 CHERI-128 Implementation
The compressed in-memory formats for CHERI-128 unsealed and sealed capabilities are de-
picted in Figures 4.3 and 4.4.

063

µperms’15 e’6 0 B’20 T’20

a’64

}
128 bits

Figure 4.3: Unsealed CHERI-128 memory representation of a capability
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a’64

}
128 bits

Figure 4.4: Sealed CHERI-128 memory representation of a capability

µperms Hardware permissions for this format are trimmed from those listed in Table 4.1 by con-
solidating system registers. The condensed format is listed in Table 4.6

e Is an exponent for both the top (T) and bottom (B) bits — see calculations below. Cur-
rently the bottom two bits of e are zero.

s Indicates if a capability is sealed or not, listed simply as 0 or 1 in Figures 4.3 and 4.4
respectively due to each format being specific to the state of the sealed bit.

a A 64-bit value holding a virtual address equal to the architectural base + offset.

architectural bit# µperms bit# Name

perms[0] 0 Global
perms[1] 1 Permit Execute
perms[2] 2 Permit Load
perms[3] 3 Permit Store
perms[4] 4 Permit Load Capability
perms[5] 5 Permit Store Capability
perms[6] 6 Permit Store Local Capability
perms[7] 7 Permit Seal
– 8–9 Reserved
perms[10] 10 Access System Registers
uperms[15–18] 11–14 Software-defined permissions

Table 4.6: Permission bit mapping
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B A 20-bit value used to reconstruct the architectural base. When deriving a capability
with a requested base req and rlength, we have:

B =

⌊
base req

2e

⌋
mod 220

Which can be rewritten as a bit-manipulation:

B = base req[19 + e : e]

For sealed capabilities, B[11 : 0] = 0

T A 20-bit value used to reconstruct the architectural top (base+ length). When deriving
a capability with a requested base req and rlength, we have:

T =

⌈
base req + rlength

2e

⌉
mod 220

Rewritten as bit manipulations:

T =

{
(base req + rlength)[19 + e : e], if (base req + rlength)[e− 1 : 0] = 0

(base req + rlength)[19 + e : e] + 1, otherwise

otype The 24-bit otype field (concatenation of the two otype fields of Figure 4.4) corresponds
directly to the otype bit vector but is defined only when the capability is sealed. These
bits are not allocated in an unsealed capability, and the otype of an unsealed capability is
0.

The hardware computes e according to the following formula:

e =

⌈
plog2

(
(rlength) · (1 + 2−6)

220

)⌉
whereplog2(x) =

{
0, if x < 1

log2(x), otherwise

which is equivalent to the following bit manipulation:

e = idxMSNZ((rlength + (rlength� 6))� 19)

where:

• idxMSNZ(x) returning the index of the most significant bit set in x

• (rlength + (rlength� 6)) being a 65-bit result

Note that:

• e is rounded up to the nearest representable value. In the current implementation the
bottom two bits of e are zero. For example, the above e calculation returned the value 1,
then it would be rounded up to 4.
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• rlength is artificially inflated in the computation of e in such a way that:

rlength + 8KiB ≤ 2e+20

to ensure that there is a representable region which is at least one page above and below
the base and bound. This allows pointers to stray up to a page beyond the base and bound
without causing an exception, a feature which is necessary to run much legacy C-code.

• e is computed in such a way that loss of precision due to alignment requirements is
minimized, i.e., e is the smallest natural n satisfying:

maxLength(n) ≥ rlengthwheremaxLength(n) =

⌊
2n+20

1 + 2−6

⌋

4.11.2 Representable Bounds Check

When a is incremented (or decremented) we need to ascertain whether the resulting capability
is representable. We do not check to see if the capability is within bounds at this point, which
is only done on dereference (load/store instructions).

We first ascertain if we are inRange and then if we are inLimits. The inRange test determines
whether an inspection of only the lower bits of the pointer and increment can yield a definitive
answer. The inLimits test assumes the success of the inRange test, and determines whether the
update to amid could take it beyond the limits of the representable space.

The increment i is inRange if its absolute value is less than s, the size of the representable
region:

inRange = −s < i < s

This reduces to a test that all the bits of Itop (i[63 : e + 20]) are the same. For inLimits, we
need only amid (a[19 + e : e]), Imid (i[e + 19 : e]), and the sign of i to ensure that we have not
crossed either R (B− 212), the limits of the representable region:

inLimits =

{
Imid < (R− amid − 1), if i ≥ 0

Imid ≥ (R− amid) ∧R 6= amid, if i < 0

When we are incrementing upwards, we must conservatively subtract one from the repre-
sentable limit to account for any carry that may propagate up from the lower bits of the full
pointer add. When the increment is negative, we must conservatively disallow any operation
where amid begins at the representable limit as the standard test would spuriously allow any
negative offset.

One final test is required that ensures that, if e ≥ 44, any increment is representable. This
handles a number of corner cases related to T , B, and amid describing bits beyond the top of
the pointer. Our final fast representable check composes these three tests:

representable = (inRange ∧ inLimits) ∨ (e ≥ 44)
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4.11.3 Decompressing Capabilities
When producing the architectural base of a capability, the value is computed by inserting B
into a[19+e:e], inserting zeros in a[e-1:0], and adding a potential correction cb to a[63:20+e]
as defined in Table 4.7:

base[63 : 20 + e] = a[63 : 20 + e] + cb

base[19 + e : e] = B

base[e− 1 : 0] = 0

When producing the architectural top (= base + length) of a capability, the value is
computed by inserting T into a[19+e:e], inserting zeros in a[e-1:0], and adding a potential
correction ct to a[63:20+e] as defined in Table 4.7:

top[64 : 20 + e] = a[63 : 20 + e] + ct

top[19 + e : e] = T

top[e− 1 : 0] = 0

Note that top is a 65-bit quantity to allow the upper bound to be larger than the address space.
For example, this is used at reset to allow the default data capability to address all of the virtual
address space, because top must be one byte more than the top address. In this special case,
e ≥ 45.

For sealed capabilities, B[11 : 0] = 0 and T[11 : 0] = 0.

We define
amid = a[19 + e : e]

R = B− 212

amid < R B < R cb amid < R T < R ct

0 0 0 0 0 0
0 1 +1 0 1 +1
1 0 −1 1 0 −1
1 1 0 1 1 0

Table 4.7: Calculating cb and ct

4.11.4 Alignment Requirements
Unsealed capabilities: Compressed capabilities impose alignment requirements on software
if precise bounds are required. The calculation of e determines the alignment requirement (see
section 4.11.1):

alignment = 2e

where e is determined by the requested length of the region (rlength). Note that in the current
implementation the bottom two bits of e are zero, so the value is rounded up.

Since the calculation of e is a little complicated, it can be convenient to have a conservative
approximation:

rlength < 2e · 3
4
MiB
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So the conservative approximation of e can be computed as follows (or the precise version used
from section 4.11.1), noting that e is also rounded up to ensure the bottom two bits are zero:

e =

⌈
plog2

(
rlength
3
4
MiB

)⌉
i.e. for an object length less than 3

4
MiB you get byte alignment (since e=0 so alignment = 1).

You then go to 16-byte alignment for objects less than 24 · 3
4
MiB = 12MiB, etc. Page

alignment (4KiB pages) is only required when objects are between 1GiB and 3GiB.
Note that the actual length of the region covered will be rounded up to the nearest alignment

boundary.

Sealed capabilities have more restrictive alignment requirements due to fewer bits available
to represent T and B. The hardware will raise an exception when sealing an unsealed capability
where the bottom 12 bits of T and B are not zero. As a consequence, the alignment becomes:

alignment = 2e+12

The relationship between rlength and e remains the same, but the actual length of the region
covered will be rounded up to the new alignment. Thus, for small regions alignment is on
4KiB (page) boundaries and the length of the region protected is a multiple of pages up to
3
4
MiB. Length of region up to 24 · 3

4
= 12MiB are aligned on 64KiB boundaries. Similarly, a

region of length 1GiB to 3GiB will be 16MiB aligned.

4.12 Potential Future Changes to the CHERI-MIPS ISA
The following changes have been discussed and are targeted for short-term implementation in
the CHERI-MIPS ISA:

• Define the behavior of the reserved permission bits 9 and 11-14. Currently on 256-bit
implementations they behave like additional user permission bits (initialized to one, can
be cleared with candperm, checked by ccheckperm) with the caveat that past or future
implementations may have specific semantics for them. In the compressed format per-
missions 11-14 are absent from the memory representation but some implementations
(L3, CHERI?) copy permission 10 (Access System Registers) into these bits when load-
ing capabilities. This is for compatibility with previous versions of the ISA which had
individual permissions for accessing each of the reserved capabilities, but this behavior
is not specified and may no longer be required.

• Define the values of base, length, and offset for compressed capabilities with e > 43,
where the formulas for decompressing base and top do not make sense due to bit in-
dexes being out of bounds. This is possible for the default capability (defined to have
length = 264, although e is unspecified) and untagged data loaded from memory. One
proposed behavior is to treat all untagged compressed capabilities as though they have
base = 0 and length = 264 for the purposes of the instructions where this matters,
namely CGetBase, CGetOffset, CIncOffset, CGetLength, CPtrCmp and CSub.
However, there is also a desire that CSetOffset should preserve the values of T and B
for debugging purposes, where possible.
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• Consider re-writing pseudocode in terms of absolute addresses rather than offsets, with-
out changing the semantics. This would eliminate repeated use of base + offset to mean
the address field of the capability; it would also potentially reduce ambiguity such as
where base is not well defined due to e > 43 as above.

• Migrate our reserved capabilities, such as DDC, EPCC, and so on, from our capability
register file (e.g., C0) to control registers accessed via special get and set instructions.
This would simplify control logic and critical paths in the pipeline. We have already
introduced pseudo-ops to get and set the Default Data Capability, and should do so
for others as well, easing the ISA-level transition. This would also make it easier to
experiment with changes in register count.

• If all control registers are removed from the capability register file, consider using C0 as
a NULL capability register similar to the MIPS $zero, rather than using CFromPtr to
construct NULL capabilities.

• Introduce an explicit CMove instruction, rather than using a pseudo-op of CIncOffset,
which requires special casing handling of sealed capabilities in that instruction.

• Provide a separate instruction for clearing the global bit on a capability. Global is cur-
rently treated as a permission, but it is really an information flow label rather than a
permission. We may want to allow clearing the global bit on a sealed capability, which
would be easiest to implement with a separate instruction, as permissions cannot be
changed on sealed capabilities.

• Allow clearing of software-defined permission bits for sealed capabilities rather than
requiring a domain switch or call to a privileged supervisor to do this. One way to do this
would be to provide a separate instruction for clearing the user-defined permission bits
on a sealed capability. The other permission bits on a sealed capability can be regarded
as the permissions to access memory that the called protected subsystem will gain when
CCall is invoked on the sealed capability; these should not be modifiable by the caller.
On the other hand, the user-defined capability bits can be regarded as application-specific
permissions that the caller has for the object that the sealed capability represents, and the
caller might want to restrict these permissions before passing the sealed capability to
another subsystem.

• Provide a CFromInt instruction that copies a general-purpose register into the offset
field of a capability register, clearing all the other fields of the capability – including the
tag bit. This is an architecturally cleaner way to implement casting an int to an intcap t
than the current approach of CFromPtr of the NULL pointer followed by CSetOffset.

• Provide a conditional branch instruction that branches depending on whether a capability
is equal or not equal to NULL. Checking the tag bit with CBTU is not the same as checking
for equality with NULL. In the current ISA, several instructions are needed to do the
latter.

• Provide a variant of CSetBounds that sets imprecise bounds suitable for sealing with
CSeal. In the 128-bit representation, the bounds of sealed capabilities have stronger
alignment requirements than for unsealed capabilities.
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• Introduce a CTestSubset instruction, which would allow efficient testing of whether
one capability describes rights that are a subset of another, directly exposing the partial
order implied by subset tests in CToPtr, the proposed CSetTag, etc.

• Introduce a special capability register that acts as a capability equivalent of the user local
register (which holds a pointer to thread-local data). This would allow finer-grained
memory protection in multithreaded programs. At present, the user local register is just
an address and not a capability, so a thread can access thread-local variables of other
threads.

• Add versions of CSetOffset and CIncOffset that raise an exception, rather than
clearing the tag bit, when the result is not representable. This would assist in debug-
ging, by causing an exception to be raised at the point in the program when the capability
became unrepresentable, rather than later on when the capability is dereferenced.

An alternative implementation (rather than having separate trapping and non-trapping
instructions) would be to add a status register that enables the trapping behaviour. This
is similar to floating point, where the FCSR controls whether a floating point overflow
results in an IEEE infinity value or an exception being thrown.

• The CSetBounds instruction, in the presence of capability compression and an unrepre-
sentable pointer and bounds, may strip the tag, making the pointer non-dereferenceable.
A cheap tag assertion instruction that can trigger a trap when a tag is lost would allow
special compilation modes to improve debuggability by detecting unexpected tag loss
sooner. If MIPS had a user status register, a tag-loss bit could be set implicitly on tag
clear, allowing intermitent conditional-branch instructions to detect and handle loss.

• Add a version of CUnseal that returns NULL, rather than raising an exception, if the
security checks fail. A common use case for CUnseal is that a protected subsystem is
passed a sealed capability by an untrusted (possibly malicious) caller, and the callee uses
CUnseal to unseal it. It would be quicker for the callee to use a non-trapping CUnseal

and then check that the result is not NULL, rather than either (a) catching the exception
in the case that the untrusted caller has passed a bad capability; or (b) checking that the
capability is suitable for unsealing before attempting to unseal it.

The following changes have been discussed for longer-term consideration:

• Allow CReturn to accept code/data capability arguments, which might be ignored for
the time being – or simply make CReturn a variation on CCall.

• Consider further the effects of combining general-purpose and capability register files,
which would avoid adding a new register file, but make some forms of ABI compatibility
more challenging.

• Introduce a Perm Unseal permission that can be used to unseal sealed capabilities of a
type – without necessarily authorizing sealing.

• Introduce support for a userspace exception handler for CCall and CReturn, allowing
more privileged user code (rather than kernel code) to implement the semantics of domain
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switching, provide memory for use in trusted stacks (if any), and so on. This would allow
application environments to provide their own object models without needing to depend
on highly privileged kernel code.

• Introduce finer-grained permissions (or new capability types) to express CPU privileges
in a more granular way. For example, to allow management of interrupt-related CPU
features without authorizing manipulation of the MMU.

• Introduce a control-flow-focused “immutable” (or, more accurately, “nonmanipulable”)
permission bit, which would prevent explicit changes to the bounds or offset, while still
allowing the offset to be implicitly changed if the capability is placed in excecution (i.e.,
is installed in PCC. This would limit the ability of attackers, in the presence of a memory
re-use bug, to manipulate the offset of a control-flow capability in order to attempt a code
re-use exploit. Some care would be required – e.g., to ensure that it was easy and efficient
to update the value in the offset during OS exception handling, where it is common to
adjust the value of the PC forward after emulating an instruction.

• Introduce further hardware permissions, such as physical-address load and store permis-
sions, which would allow non-virtual-address interpretations of capabilities, bypassing
the MMU. These might be appropriate for use by kernels, accelerators, and DMA en-
gines there physical addresses (or perhaps hypervisor-virtualised physical addresses) of-
fer great efficiency or improved semantics.

• Introduce variants of some instructions, such as CSetBounds and CIncOffset that take
immediate arguments. This will have no impact on the abstract model, but should make
some common code sequences more efficient. In particular, array traversal currently in-
volves materializing a constant in an integer register to represent the offset. If this is in a
loop with a function call, then it uses one extra integer register and adds one extra instruc-
tion per iteration. Similarly, constructing an on-stack address-taken variable requires an
offset added to the stack capability, followed by setting the bounds. In the overwhelming
majority of cases, both the offset and the bounds are compile-time constants. For large
arrays, the cost of two extra instructions is negligible relative to the amount of work done
processing the array. For small arrays, this cost is noticeable.

It may also be worth adding a version of CAndPerm that takes an immediate, although
this is less clear. The permissions mask is usually known at compile time, but most
instruction sequences that use CAndPerm currently involve enough other work that the
permission modification is not a noticeable overhead.
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Chapter 5

The CHERI-MIPS Instruction-Set
Reference

CHERI-MIPS’s instructions express a variety of operations affecting capability and general-
purpose registers as well as memory access and control flow. A key design concern is guarded
manipulation, which provides a set of constraints across all instructions that ensure monotonic
non-increase in rights through capability manipulations. These instructions also assume, and
specify, the presence of tagged memory, described in the previous chapter, which protects in-
memory representations of capability values. Many further behaviors, such as reset state and
exception handling (taken for granted in these instruction descriptions), are also described in
the previous chapter. A small number of more recently specified experimental instructions are
specified in Appendix C rather than in this chapter.

The instructions fall into a number of categories: instructions to copy fields from capabil-
ity registers into general-purpose registers so that they can be computed on, instructions for
refining fields within capabilities, instructions for memory access via capabilities, instructions
for jumps via capabilities, instructions for sealing capabilities, and instructions for capability
invocation. In this chapter, we specify each instruction via both informal descriptions and pseu-
docode. To allow for more succinct pseudocode descriptions, we rely on a number of common
definitions also described in this chapter.

5.1 Notation Used in Pseudocode
The pseudocode in the rest of this chapter uses the following notation:

• not, or, and, true, false

Boolean operators.

• =, 6=
Comparison.

• +, −, ∗, /, mod

Arithmetic operators. Operations are over the (infinite range) mathematical integers, with
no wrap-around on overflow. In cases where wrap-around on overflow is intended, this
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is explicitly indicated with a mod operator. All of the CHERI instructions can be im-
plemented with finite-range (typically 64 bit) arithmetic; the hardware does not need to
implement bignum arithmetic. For example, a formal verification based on this specifica-
tion could prove that every integer value computed will always fit within the finite range
of the variable to which it is being assigned.

If b > 0, then a mod b is in the range 0 to b− 1. (So it is an unsigned value).

• ab

Integer exponentiation. Defined only for b ≥ 0.

• <, ≤, >, ≥
Integer comparison.

• <expression>.<field>

Selection of a field within a structure.

• <expression> with <field>← <expression>

A structure with the named field replaced with another value.

• <expression>[<expression>]

Selection of an element within an array.

• <expression> [<expression> .. <expression>]

A slice of an array.

• <expression> with [<expression>]← <expression>

An array with the selected element replaced with a new value.

• <expression> with [<expression> .. <expression>]← <expression>

An array with the selected slice replaced with a new slice.

• <expression> ∩ <expression>

The bitwise and of two arrays of booleans.

• <expression> ∪ <expression>

The bitwise or of two arrays of booleans.

• ∅
A boolean array in which every element is set to false.

• <variable>← <expression>

Assignment of a new value to a mutable variable. If a mutable variable is a structure, a
new value can be assigned to an individual field. If a mutable variable is an array. a new
value can be assigned to an individual array element, or to a slice of the array.

98



or
and
not
=, 6=, <, ≤, >, ≥
with
+, −
∗, /, mod
ab

Figure 5.1: Operator precedence in pseudocode

128-bit 256-bit

capability_size 16 32
max_otype 224 − 1 224 − 1
first_uperm 15 11
last_uperm 18 30

Figure 5.2: Constants in pseudocode

• if . . . then . . . else if . . . else . . . endif

Conditional branch.

• <identifier> (<expression> [, <expression>]*)

Function invocation.

• <identifier> (<expression> [, <expression>]*)

Procedure call.

The precedence of the operators used in the pseudocode is shown in table 5.1.

5.2 Common Constant Definitions

The constants used in the pseudo-code are show in table 5.2; their value depends on whether
the 128-bit or 256-bit representation of capabilities is being used.

The null capability is defined as follows:
null capability = int to cap(0)
TO DO: We should have a table defining the values of the capability exception codes.

5.3 Common Variable Definitions

The following variables are used in the pseudocode:
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cb : Capability
cd : Capability
cs : Capability
ct : Capability
rd : Unsigned64
rs : Unsigned64
rt : Unsigned64
mask : Unsigned16
offset : Signed16

5.4 Common Function Definitions
The following functions are used in the pseudocode for more than one instruction, and are
collected here for convenience. The & notation means use the number of a register, rather than
its contents.

function REGISTER INACCESSIBLE(cb)

return
not PCC.access system registers and
(&cb = KDC or
&cb = KCC or
&cb = KR1C or
&cb = KR2C or
&cb = EPCC)

end function
TO DO: register inaccessible should check if we are in a branch delay slot from ccall fast

and the register is IDC.
to signed64 converts an unsigned 64 bit integer into a signed 64 bit integer:

function TO SIGNED64(x)
if x < 263 then

return x
else

return x − 264

end if
end function
zero extend converts a sequence of bytes into an unsigned 64 bit integer. CHERI uses a

big-endian byte ordering.
sign extend converts a sequence of bytes into a signed 64 bit integer (i.e. if the most

significant bit of the first byte is set, the result is negative).
bytes to cap converts a sequence of bytes into a capability.
cap to bytes converts a capability into a sequence of bytes.
int to cap converts a 64-bit integer into a capability that holds the integer in its offset

field. It has the following properties:

• forall x: Unsigned64 int to cap(x).offset = x
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• forall x: Unsigned64 int to cap(x).tag = false

• forall x: Unsigned64 int to cap(x).base = 0

The contents of other fields of int to cap depends on the capability compression scheme
in use (e.g., 256-bit capabilities or 128-bit compressed capabilities). In particular, with 128
bit compressed capabilities, length is not always zero. The length of a capability created via
int to cap is not semantically meaningful, and programs should not rely on it having any
particular value.

raise c2 exception is used when an instruction raises an exception. The following
pseudocode omits the details of MIPS exception handling (branching to the address of the
exception hander, etc.)

procedure RAISE C2 EXCEPTION(cause, reg)
cp0.cause← 18
capcause.reg← &reg
capcause.cause← cause
. . .

end procedure
procedure RAISE C2 EXCEPTION NOREG(cause)

cp0.cause← 18
capcause.reg← 0xff
capcause.cause← cause
. . .

end procedure
execute branch is used when an instruction branches to an address. The MIPS ISA

includes branch delay slots, so the instruction in the branch delay slot will be executed before
the branch is taken; this is omitted in the following pseudocode:

procedure EXECUTE BRANCH(pc)
. . .

end procedure
execute branch pcc is used when an instruction branches to an address and changes

PCC. The change to PCC does not take effect until after the instruction in the branch delay slot
has been executed.

procedure EXECUTE BRANCH PCC(pc)
. . .

end procedure

5.5 Table of CHERI Instructions
Tables 5.3 and 5.4 list available capability coprocessor instructions.

5.6 Details of Individual Instructions
The following sections provide a detailed description of each CHERI ISA instructions. Each
instruction description includes the following information:
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Mnemonic Description

CGetBase Move base to a general-purpose register
CGetLen Move length to a general-purpose register
CGetOffset Move offset to a general-purpose register
CGetPerm Move permissions field to a general-purpose register
CGetSealed Move sealed bit to a general-purpose register
CGetTag Move tag bit to a general-purpose register
CGetType Move object type field to a general-purpose register
CPtrCmp Compare capability pointers
CToPtr Capability to pointer

CAndPerm Restrict permissions
CClearRegs Clear multiple registers
CClearTag Clear the tag bit
CFromPtr Create capability from pointer
CGetPCC Move PCC to capability register
CGetPCCSetOffset Get PCC with new offset
CIncOffset Increase offset
CMOVN Move if non-zero
CMOVZ Move if zero
CSetBounds Set bounds
CSetBoundsExact Set bounds exactly
CSetOffset Set cursor to an offset from base
CSub Subtract capabilities
CBuildCap Import a capability (experimental)
CCopyType Import a capability’s otype (experimental)

CL[BHWD][U] Load via capability register
CLC Load capability register
CLL[BHWD][U] Load linked via capability register
CLLC Load linked capability via capability register
CSC Store capability register
CS[BHWD] Store via capability register
CSC[BHWD] Store conditional via capability register
CSCC Store conditional capability via capability

CBTS Branch if capability tag is set
CBTU Branch if capability tag is unset
CJALR Jump and link capability register
CJR Jump capability register

Figure 5.3: Capability coprocessor instruction summary
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Mnemonic Description

CCheckPerm Raise exception on insufficient permission
CCheckType Raise exception if object types do not match

CSeal Seal a capability
CCSeal Conditionally seal a capability (experimental)
CUnseal Unseal a sealed capability

CCall Call into another security domain
CReturn Return to the previous security domain

CGetCause Move the capability exception cause register to a general-purpose register
CSetCause Set the capability exception cause register

Figure 5.4: Capability coprocessor instruction summary, continued

• Instruction opcode format number

• Assembly language syntax

• Bitwise figure of the instruction layout

• Text description of the instruction

• Pseudo-code description of the instruction

• Enumeration of any exceptions that the instruction can trigger
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CAndPerm: Restrict Permissions
Format

CAndPerm cd, cb, rt
02356101115162021252631

0x12 0x04 cd cb rt 0x0

Description

Capability register cd is replaced with the contents of capability register cb with the perms field
set to the bitwise AND of its previous value and bits 0 .. 10 of general-purpose register rd and
the uperms field set to the bitwise and of its previous value and bits first uperm .. last uperm
of rd.

Pseudocode

if register inaccessible(cd) then
raise c2 exception(exceptionAccessSystem, cd)

else if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if cb.sealed then
raise c2 exception(exceptionSealed, cb)

else
cd← cb
with perms← cb.perms ∩ rt[0 .. 10]
with uperms← cb.uperms ∩ rt[first uperm .. last uperm]

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb or cd is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

• cb.tag is not set.

• cb.s is set.
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CBTS: Branch if Capability Tag is Set
Format

CBTS cb, offset
015162021252631

0x12 0x0a cb offset

Description

Sets the PC to PC + 4*offset + 4, where offset is sign extended, if cb.tag is set.
The instruction following the branch, in the delay slot, is executed before branching.

Pseudocode

if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if cb.tag then
execute branch(PC + 4*sign extend(offset) + 4)

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

Notes

• Like all MIPS branch instructions, CBTS has a branch delay slot. The instruction after it
will always be executed, regardless of whether the branch is taken or not.

• This instruction is intended to resemble the conditional branch instructions from the
MIPS ISA. In particular, the shift left of the offset by 2 bits and adding 4 is the same
as MIPS conditional branches.

• CBTS does not check that the branch is outside the range of PCC, but the bounds check
performed during instruction fetch will catch out of range branches.
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CBTU: Branch if Capability Tag is Unset
Format

CBTU cb, offset
015162021252631

0x12 0x09 cb offset

Description

Sets the PC to PC + 4*offset + 4, where offset is sign extended, if cb.tag is not set.
The instruction following the branch, in the delay slot, is executed before branching.

Pseudocode

if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if not cb.tag then
execute branch(PC + 4*sign extend(offset) + 4)

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

Notes

• Like all MIPS branch instructions, CBTU has a branch delay slot. The instruction after it
will always be executed, regardless of whether the branch is taken or not.

• This instruction is intended to resemble the conditional branch instructions from the
MIPS ISA. In particular, the shift left of the offset by 2 bits and adding 4 is the same
as MIPS conditional branches.

• CBTU does not check that the branch is outside the range of PCC, but the bounds check
performed during instruction fetch will catch out of range branches.
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CCall: Call into Another Security Domain
Format

CCall cs, cb[, selector]
0101115162021252631

0x12 0x05 cs cb selector

Description

CCall is used to make a call between protection domains, unsealing sealed code and data-
capability operands, subject to checks on those capabilities. This allows the callee to gain
access to a different set of capabilities than its caller, supporting implementation of software
encapsulation. The two operand capabilities must be accessible, be valid capabilities, be sealed,
have matching types, and have suitable permissions and bounds, or an exception will be thrown.
cs contains a sealed code capability for the callee subsystem, which will be unsealed and loaded
into PCC. cb contains a sealed data capability for the callee subsystem, which will be unsealed
and loaded into IDC. In the parlance of object-oriented programming, cb is a capability for an
object’s instance data, and cs is a capability for the methods of the object’s class. The CCall
instruction accepts a selector operand that selects between two domain-transition semantics
following successful completion of operand capability checks:

0 The protection-domain transition will be implemented by a software exception handler,
which will perform any necessary register-file transformation or saving and restoring
of state. This mode of operation does not require Permit CCall on the sealed capability
operands.

1 The protection-domain transition will be direct, in the style of a jump, without assistance
from a software exception handler. The instruction will unseal the sealed operand capa-
bilities and install them as new PCC and IDC values. This mode of operation requires
Permit CCall to be present on both sealed capability operands.

If omitted in assembly, the selector field is assumed to be 0. Issuing a CCall instruction with
any value other than 0 or 1 is undefined behavior.

With both selectors, a constrained form of non-monotonicity is supported in the architec-
ture. With selector 0, privilege is escalated through a controlled transfer of execution into an
exception handler that has additional access to exception-context capability registers (and lower
rings). With selector 1, privilege is escalated by virtue of CCall unsealing sealed operand ca-
pability registers during a controlled transfer of execution to the callee in a jump-style transfer
of control.

Selector 0 - Pseudocode

Selector 0 implements a software-assisted domain transition via an exception handler:
if register inaccessible(cs) then

raise c2 exception(exceptionAccessSystem, cs)
else if register inaccessible(cb) then
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raise c2 exception(exceptionAccessSystem, cb)
else if not cs.tag then

raise c2 exception(exceptionTag, cs)
else if not cb.tag then

raise c2 exception(exceptionTag, cb)
else if not cs.sealed then

raise c2 exception(exceptionSealed, cs)
else if not cb.sealed then

raise c2 exception(exceptionSealed, cb)
else if cs.otype 6= cb.otype then

raise c2 exception(exceptionType, cs)
else if not cs.perms.Permit Execute then

raise c2 exception(exceptionPermitExecute, cs)
else if cb.perms.Permit Execute then

raise c2 exception(exceptionPermitExecute, cb)
else if cs.offset≥ cs.length then

raise c2 exception(exceptionLength, cs)
else

raise c2 exception(exceptionCall, cs)
end if

Selector 0 - Exceptions

A coprocessor 2 exception will be raised so that the desired semantics can be implemented in a
trap handler.

The capability exception code will be 0x05 and the handler vector will be 0x100 above the
general-purpose exception handler.

A further coprocessor 2 exception raised for either selector 0 or selector 1 if:

• cs or cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

• cs.s is not set.

• cb.s is not set.

• cs.otype 6= cb.otype

• cs.perms.Permit Execute is not set.

• cb.perms.Permit Execute is set.

• cs.offset ≥ cs.length.

Selector 1 - Pseudocode

Selector 1 implements a jump-like domain transition without using a software exception han-
dler:

if register inaccessible(cs) then
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raise c2 exception(exceptionAccessSystem, cs)
else if register inaccessible(cb) then

raise c2 exception(exceptionAccessSystem, cb)
else if not cs.tag then

raise c2 exception(exceptionTag, cs)
else if not cb.tag then

raise c2 exception(exceptionTag, cb)
else if not cs.sealed then

raise c2 exception(exceptionSealed, cs)
else if not cb.sealed then

raise c2 exception(exceptionSealed, cb)
else if cs.otype 6= cb.otype then

raise c2 exception(exceptionType, cs)
else if not cs.perms.Permit CCall then

raise c2 exception(exceptionPermitCCall, cs)
else if not cb.perms.Permit CCall then

raise c2 exception(exceptionPermitCCall, cb)
else if not cs.perms.Permit Execute then

raise c2 exception(exceptionPermitExecute, cs)
else if cb.perms.Permit Execute then

raise c2 exception(exceptionPermitExecute, cb)
else if cs.offset≥ cs.length then

raise c2 exception(exceptionLength, cs)
else

PCC← cs
PCC.sealed← false
PCC.otype← 0
PC← cs.offset
IDC← cb
IDC.sealed← false
IDC.otype← 0

end if
The branch-delay slot after CCall with selector 1 throws an exception if it reads or writes IDC.
See Section 8.23.

Selector 1 - Exceptions

In addition to exceptions that can be thrown by selector 0, selector 1 will raise a coprocessor 2
exception if:

• cs.perms.Permit CCall is not set

• cb.perms.Permit CCall is not set

Notes

• Selector 0 semantics can be implemented in a number of ways split over hardware and
software; we have experimented with several. A simple implementation might have
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CCall throw a software exception, with all other behavior implemented via a software
trap handler. A hybrid implementation could perform various checks in hardware, defer-
ring only trusted stack manipulation (or other behaviors, such as asynchronous calling
conventions) to the software trap handler. Further defensive coding conventions (beyond
instruction semantics) may also sensibly be shifted to the exception handler in order to
avoid redundancy – e.g., the clearing of the same registers to prevent leaks in either direc-
tion. A significant tension exists in the hardware optimization of this instruction between
using a flexible calling convention and semantics versus exploiting hardware optimiza-
tion opportunities. Authors of compilers or assembly language programs should not rely
on CCall being implemented in any particular blend of hardware and software.

• From the point of view of security, CCall needs to be an atomic operation (i.e. the caller
cannot decide to just do some of it, because partial execution could put the system into
an insecure state). From a hardware perspective, more complex domain-transition imple-
mentations (e.g., to implement function-call semantics or message passing) may need to
perform multiple memory reads and writes, which might take multiple cycles and com-
plicate control logic. Supporting both selector 0 and selector 1 semantics for constrained
privilege escalation allow software trap handlers or trusted domains to perform those
sequences without more complex instructions.

• Implementations may choose to restrict the register numbers that may be passed as cs and
cb in order to avoid the need to decode the instruction and identify the register arguments.
The software implementation in CheriBSD at the time of writing requires the cs be C1,
and that cb be C2, consistent with the CHERI ABI.

• Different microarchitectural tradeoffs exist around exception-like or jump-like semantics
for the CCall (and corresponding CReturn) instructions. For example, exceptions may
require greater disruption of speculated instructions in pipeline and superscalar designs.
The jump-like semantics may therefore be preferred for this reason, but do require quite
different software use of sealed capabilities.

• The 10-bit selector in the CCall instruction allows for the possibility of further semantics
being developed – e.g., to model domain transition on hardware multithreading behavior
(such as passing values between register files or performing other synchronization), more
complex in-hardware sequences including memory access, etc. For example, CCall vari-
ations might perform more or less unsealing (e.g., operating only on PCC), set up sealed
or unsealed link registers for both code and data in the style of a more conventional jump
(e.g., by sealing and moving caller PCC and IDC registers into ABI-reserved registers),
or more fully implement models such as the CheriBSD and CheriOS domain transitions
as described below (e.g., by pushing return state onto stacks, or implementing message
passing).

• In our initial hardware implementation, selector-1 semantics were implemented as selec-
tor 42.

• The assignments to PCC.s and IDC.s change the value of these architectural fields. When
capability compression is in use, the microarchitectural bit representation of other fields
within a capability depends on the value of the s bit, so this assignment may have the
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effect of changing the bit representation of the other fields. i.e., a hardware implementa-
tion may need to change the representation of the rest of the capability, not just change
the sealed bit.

Expected Software Use

Higher-level software protection-domain transitions transform the capability register file to re-
duce or expand the set of code and data rights available to the executing thread of control.
In CHERI-based software, these transitions can be usefully modeled as function invocation or
message passing in which data and capability registers are passed as arguments or messsages,
and in which callers and callees can be protected from undesired access to internal state from
the other party (i.e., encapsulation). Domain transitions may implement symmetric (mutual) or
asymmetric distrust between caller and callee, depending on guarantees about limiting callee
access to caller state, and vice versa.

Either selector may be used to implement mutual distrust by entering a more privileged
“trusted intermediary” able to perform capability and general-purpose register clearing, saving,
and restoring, as well as tracking properties of communications such as message passing or
implementing a trusted stack for reliable call-return semantics and error recovery. The CCall
instruction performs a set of checks on sealed operand capabilities that can be depended on
with either selector, allowing domain transition to be more efficient.

With selector 0, the software exception handler will perform any necessary transformation
of the register files – e.g., by clearing registers, unsealing and installing a new PCC from cs, un-
sealing and installing a new IDC from cb, or recording a trustworthy return path in a “trusted
stack” to implement call-return semantics. This allows implementation of a variety of trust
models with varying performance properties; for example, where the caller trusts the callee,
less register clearing may be performed. In our CheriBSD software prototype, the CCall ex-
ception handler implements a strong function-call-like semantic using a trusted stack to support
a safe CReturn. The sealed code and data capability directly describe the callee protection do-
main, and so are unsealed and installed in callee capability registers when it starts executing.
Returning from the exception prevents further use of privileged exception-handling capabilities.

With selector 1, a number of use cases can be formulated, depending on trust model. To
implement mutual distrust, sealed code capabilities must point to an intermediary that is trusted
by the callee to implement escalation to callee privilege. With respect to capabilities, the caller
can perform its own register clearing and encapsulation of (optional) return state passed via
register arguments to the callee. CCall selector 1 does not implement a link register, allowing
the calling convention to implement semantics not implying a leak PCC to the callee. In
our CheriOS software prototype, sealed code capabilities refer to one of a set of message-
passing implementations, with the sealed data capability describing the message ring and target
domain’s code and data capabilities. A second CJR out of the message-passing implementation
into the callee, combined with suitable register clearing, is suitable to deescalate privilege to
the callee protection domain without a second use of CCall.

Sketch of the CheriBSD CCall Model

The CheriBSD CCall model implements domain transition via a short privileged exception
handler using selector 0. Modeled on function invocation, the handler depends on hardware-
assisted checks (such as of operand register accessibility, validity, sealing, types, and permis-
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sions). If the checks pass, the handler will unseal the sealed operand capabilities, installing
them in PCC and IDC. It also clears other non-argument registers to prevent data and capabil-
ity leakage from caller to callee. In addition, CheriBSD implements a trusted stack that tracks
caller PCC and IDC so that a later CReturn can restore control (and security state) one in-
struction after the original call site. Finally, the CheriBSD handler also implements a form of
capability flow control by preventing the passing of non-global capabilities between caller and
callee. A corresponding software exception-handler implementation of the CReturn instruc-
tion will pop an entry from the trusted stack, suitably clear non-return registers, and perform
capability flow-control on non-global return capabilities. The CheriBSD CCall exception han-
dler operates as follows:

1. PCC (with its offset field set to the program counter (PC) + 4) is pushed onto the trusted
system stack.

2. IDC is pushed onto the trusted system stack.

3. cs is unsealed and the result placed in PCC.

4. cb is unsealed and the result placed in IDC.

5. The program counter is set to cs.offset. (i.e. control branches to virtual address cs.base
+ cs.offset, because the program counter is relative to PCC.base).

The CheriBSD CCall can be modeled with the following pseudocode:
if register inaccessible(cs) then

raise c2 exception(exceptionAccessSystem, cs)
else if register inaccessible(cb) then

raise c2 exception(exceptionAccessSystem, cb)
else if not cs.tag then

raise c2 exception(exceptionTag, cs)
else if not cb.tag then

raise c2 exception(exceptionTag, cb)
else if not cs.sealed then

raise c2 exception(exceptionSealed, cs)
else if not cb.sealed then

raise c2 exception(exceptionSealed, cb)
else if cs.otype 6= cb.otype then

raise c2 exception(exceptionType, cs)
else if not cs.perms.Permit Execute then

raise c2 exception(exceptionPermitExecute, cs)
else if cb.perms.Permit Execute then

raise c2 exception(exceptionPermitExecute, cb)
else if cs.offset≥ cs.length then

raise c2 exception(exceptionLength, cs)
else

PCC.offset← PC + 4
TSS← TSS − capability size
mem[TSS .. TSS + capability size − 1]← PCC
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tags[toTag(TSS)]← PCC.tag
TSS← TSS − capability size
mem[TSS .. TSS + capability size − 1]← IDC
tags[toTag(TSS)]← IDC.tag
PCC← cs
PCC.sealed← false
PCC.otype← 0
PC← cs.offset
IDC← cb
IDC.sealed← false
IDC.otype← 0

end if
This software pseudocode may raise a further coprocessor 2 exception if:

• The trusted system stack would overflow (i.e., if PCC and IDC were pushed onto the
system stack, it would overflow the bounds of TSC).

The exception handler also clears non-argument capability and general-purpose registers,
and prevents the use of argument registers that are valid capabilities but do not have the global
bit set.

The trusted-stack (TSC) behavior described in the software pseudocode above is not suit-
able for a RISC-style load-store processor implementation due to its complex combination of
control-flow, register-to-register, and memory-access operations.

Sketch of the CheriOS CCall Model

As an alternative to an exception-based implementation, a jump-based interpretation of CCall
is also available by setting the selector field to 1. In this case, the architecture allows non-
monotonic transformation of the register file when presented with suitable operand capabilities,
unsealing the two capabilities into PCC and IDC without the need for a software exception
handler. The “callee” can then use these additional rights to implement domain switching and
expansion/reduction of privilege via ordinary loads and register moves.

In the CheriOS model, CCall is used to implement an asynchronous message-passing se-
mantic. The sealed code capability is directed to a software message-passing implementation
that acts as a “trusted intermediary”, and the sealed data capability refers to a description of the
destination domain including message ring. The message-passing implementation adds argu-
ment registers to the ring, and will then either return control to the sender context, or continue
in to the recipient context. This is accomplished by suitable register-file manipulation to give
up any unnecessary privilege, and an ordinary capability jump to pass control to an appropriate
unprivileged domain. As with the CheriBSD model, the message-passing routine must perform
any necessary saving of caller context, checking and clearing of registers, and installation of
callee context to support safe interactions.
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CCheckPerm: Raise Exception on Insufficient Permission
Format

CCheckPerm cs, rt
02356101115162021252631

0x12 0x0b cs rt 0x0

Description

A exception is raised (and the capability cause set to “user defined permission violation”) if
there is a bit set in rt that is not set in cs.perms (i.e. rt describes a set of permissions, and an
exception is raised if cs does not grant all of those permissions).

Pseudocode

if register inaccessible(cs) then
raise c2 exception(exceptionAccessSystem, cs)

else if not cs.tag then
raise c2 exception(exceptionTag, cs)

else if cs.perms ∩ rt[0 .. 14] 6= rt[0 .. 14] then
raise c2 exception(exceptionUserDefined, cs)

else if cs.uperms ∩ rt[15 .. 15 + max uperm] 6= rt[15 .. 15 + max uperm] then
raise c2 exception(exceptionUserDefined, cs)

else if rt[16 + max uperm .. 63] 6= 0 then
raise c2 exception(exceptionUserDefined, cs)

end if

Exceptions

A coprocessor 2 exception is raised if:

• cs is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

• cs.tag is not set.

• There is a bit that is set in rt and is not set in cs.perms.

• There is a bit that is set in rt and is not set in cs.uperms.

Notes

• If cs.tag is not set, then cs does not contain a capability, cs.perms might not be meaning-
ful as a permissions field, and so a tagViolation exception is raised.

• This instruction can be used to check the permissions field of a sealed capability, so the
instruction does not check cs.s.
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CCheckType: Raise Exception if Object Types Do Not Match
Format

CCheckType cs, cb
02356101115162021252631

0x12 0x0b cs cb 0x1

Description

An exception is raised if cs.otype is not equal to cb.otype.

Pseudocode

if register inaccessible(cs) then
raise c2 exception(exceptionAccessSystem, cs)

else if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if not cs.tag then
raise c2 exception(exceptionTag, cs)

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if not cs.sealed then
raise c2 exception(exceptionSealed, cs)

else if not cb.sealed then
raise c2 exception(exceptionSealed, cb)

else if cs.otype 6= cb.otype then
raise c2 exception(exceptionType, cs)

end if

Exceptions

A coprocessor 2 exception is raised if:

• cs or cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

• cs.tag is not set.

• cb.tag is not set.

• cs.s is not set.

• cb.s is not set.

• cs.otype6= cb.otype.
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CClearRegs: Clear Multiple Registers

Format

ClearLo mask
ClearHi mask
CClearLo mask
CClearHi mask
FPClearLo mask
FPClearHi mask

015162021252631

0x12 0x0f regset mask

Description

The registers in the target register set, regset, corresponding to the set bits in the immediate
mask field are cleared. That is, if bit 0 of mask is set, then the lowest numbered register in
regset is cleared, and so on. The following values are defined for the regset field:

Mnemonic regset Affected registers

ClearLo 0 R0–R15
ClearHi 1 R16–R31
CClearLo 2 C0–C15
CClearHi 3 C16–C31
FPClearLo 4 F0–F15
FPClearHi 5 F16–F31

For general-purpose registers, clearing means setting to zero. For capability registers to
the NULL capability, clearing consists of setting all capability fields such that the in-memory
representation will be all zeroes, with a cleared tag bit, granting no rights.

Exceptions

• A Reserved Instruction exception is raised for unknown or unimplemented values of
regset.

• CClearHi raises a CP2 exception (with CapCause.ExcCode set to Access System Registers
Violation) if one or more of the capability registers to be cleared are reserved registers,
and PCC.Access System Registers is not set.

• CClearLo and CClearHi raise a coprocessor unusable exception if the capability co-
processor is disabled.

• FPClearLo and FPClearHi raise a coprocessor unusable exception if the floating point
unit is disabled.
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Notes

• These instructions are designed to accelerate the register clearing that is required for
secure domain transitions. It is expected that they can be implemented efficiently in
hardware using a single ‘valid’ bit per register that is cleared by the ClearRegs instruction
and set on any subsequent write to the register.

• The mnemonic for the general-purpose register instruction does not make it very clear
what the instruction does. It would be preferable to have a more descriptive mnemonic.
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CClearTag: Clear the Tag Bit
Format

CClearTag cd, cb

023101115162021252631

0x12 0x04 cd cb 0x5

Description

Capability register cd is replaced with the contents of cb, with the tag bit cleared.

Pseudocode

if register inaccessible(cd) then
raise c2 exception(exceptionAccessSystem, cd)

else if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else
cd← cb with tag← false

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb or cd is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.
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CFromPtr: Create Capability from Pointer
Format

CFromPtr cd, cb, rt
02356101115162021252631

0x12 0x04 cd cb rt 0x7

Description

rt is a pointer using the C-language convention that a zero value represents the NULL pointer.
If rt is zero, then cd will be the NULL capability (tag bit not set, all other bits also not set). If
rt is non-zero, then cd will be set to cb with the offset field set to rt.

Pseudocode

if register inaccessible(cd) then
raise c2 exception(exceptionAccessSystem, cd)

else if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if rt = 0 then
cd← null capability

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if cb.sealed then
raise c2 exception(exceptionSealed, cb)

else if not representable(cb.sealed, cb.base, cb.length, rt) then
cd← int to cap((cb.base + rt) mod264)

else
cd← cb with offset← rt

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb or cd is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

• cb.tag is not set and rt 6= 0.

• cb.s is set and rt 6= 0.

Notes

• CSetOffset doesn’t raise an exception if the tag bit is unset, so that it can be used
to implement the intcap t type. CFromPtr raises an exception if the tag bit is unset:
although it would not be a security violation to to allow it, it is an indication that the
program is in error.
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• The encodings of the NULL capability are chosen so that zeroing memory will set a
capability variable to NULL. This holds true for compressed capabilities as well as the
256-bit version.
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CGetBase: Move Base to a General-Purpose Register
Format

CGetBase rd, cb
056101115162021252631

0x12 0x00 rd cb 0x2

Description

General-purpose register rd is set equal to the base field of capability register cb.

Pseudocode

if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else
rd← cb.base

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.
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CGetCause: Move the Capability Exception Cause Register to a General-
Purpose Register
Format

CGetCause rd
056101115162021252631

0x12 0x00 rd 0x00 0x4

Description

General-purpose register rd is set equal to the capability cause register.

Pseudocode

if not PCC.perms.Access System Registers then
raise c2 exception noreg(exceptionAccessSystem)

else
rd[0 .. 7]← capcause.reg
rd[8 .. 15]← capcause.cause
rd[16 .. 63]← 0

end if

Exceptions

A coprocessor 2 exception is raised if:

• PCC.perms.Access System Registers is not set.

122



CGetLen: Move Length to a General-Purpose Register
Format

CGetLen rd, cb
056101115162021252631

0x12 0x00 rd cb 0x3

Description

General-purpose register rd is set equal to the length field of capability register cb.

Pseudocode

if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if cb.length ≥ 264 then
rd← 264 − 1

else
rd← cb.length

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

Notes

• With the 256-bit representation of capabilities, length is a 64-bit unsigned integer and can
never be greater than 264−1. With the 128-bit compressed representation of capabilities,
the result of decompressing the length can be 264; CGetLen will return the maximum
value of 264 − 1 in this case.
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CGetOffset: Move Offset to a General-Purpose Register
Format

CGetOffset rd, cb
023101115162021252631

0x12 0x0d rd cb 0x2

Description

General-purpose register rd is set equal to the offset fields of capability register cb.

Pseudocode

if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else
rd← cb.offset

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

124



CGetPCC: Move PCC to Capability Register
Format

CGetPCC cd
056101115162021252631

0x12 0x00 cd 0x0 0x1f 0x3f

Description

Capability register cd is set equal to the PCC, with cd.offset set equal to PC.

Pseudocode

if register inaccessible(cd) then
raise c2 exception(exceptionAccessSystem, cd)

else
cd← PCC with offset← PC

end if

Exceptions

A coprocessor 2 exception is raised if:

• cd is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.
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CGetPCCSetOffset: Get PCC with new offset
Format

CGetPCCSetOffset cd, rs
056101115162021252631

0x12 0x00 cd rs 0x7 0x3f

Description

Capability register cd is set equal to the PCC, with cd.offset set equal to rs.

Pseudocode

if register inaccessible(cd) then
raise c2 exception(exceptionAccessSystem, cd)

else if not representable(PCC.sealed, PCC.base, PCC.length, rs) then
cd← int to cap((PCC.base + rs) mod264)

else
cd← PCC with offset← rs

end if

Exceptions

A coprocessor 2 exception is raised if:

• cd is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

Notes
• This instruction is a peformance optimization; a similar effect can be achieved with
CGetPCC followed by CSetOffset.
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CGetPerm: Move Permissions Field to a General-Purpose Register
Format

CGetPerm rd, cb
056101115162021252631

0x12 0x00 rd cb 0x0

Description

The least significant 11 bits of general-purpose register rd are set equal to the perms field of
capability register cb; bits first uperm to last uperm of rd are set equal to the uperms field of
cb. The other bits of rd are set to zero.

Pseudocode

if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else
rd← 0
with [0 .. 10]← cb.perms
with [first uperm .. last uperm]← cb.uperms

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.
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CGetSealed: Move Sealed Bit to a General-Purpose Register
Format

CGetSealed rd, cb
056101115162021252631

0x12 0x00 rd cb 0x6

Description

The low-order bit of rd is set to cb.s. All other bits of rd are cleared.

Pseudocode

if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else
rd[0]← cb.sealed
rd[1 .. 63]← 0

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.
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CGetTag: Move Tag Bit to a General-Purpose Register
Format

CGetTag rd, cb
056101115162021252631

0x12 0x00 rd cb 0x5

Description

The low bit of rd is set to the tag value of cb. All other bits are cleared.

Pseudocode

if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else
rd[0]← cb.tag
rd[1 .. 63]← 0

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.
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CGetType: Move Object Type Field to a General-Purpose Register
Format

CGetType rd, cb
056101115162021252631

0x12 0x00 rd cb 0x1

Description

General-purpose register rd is set equal to the otype field of capability register cb.

Pseudocode

if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if cb.sealed then
rd[0 .. 23]← cb.otype
rd[24 .. 63]← 0

else
rd← 264 − 1

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

Notes
• If the capability is not sealed, a value of -1 is returned. As the allowed values of otype in a

sealed capability are non-negative, this makes it easy to tell from the result of CGetType
whether the capability was sealed or unsealed. This might be used, for example, in an
efficient routine for paging capabilities back into memory from swap.

130



CIncOffset: Increase Offset

Format

CIncOffset cd, cb, rt
CMove cd, cb

02356101115162021252631

0x12 0x0d cd cb rt 0x0

Description

Capability register cd is set equal to capability register cb with its offset field replaced with
cb.offset + rt.

If capability compression is in use, and the requested base, length and offset cannot be
represented exactly, then cd.tag is cleared, cd.base and cd.length are set to zero, cd.perms is
cleared, and cd.offset is set equal to cb.base + cb.offset + rt.

Pseudocode

if register inaccessible(cd) then
raise c2 exception(exceptionAccessSystem, cd)

else if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if cb.tag and cb.sealed and rt 6= 0 then
raise c2 exception(cb, exceptionSealed)

else if not representable(cb.sealed, cb.base, cb.length, (cb.offset + rt) mod264) then
cd← int to cap((cb.base + cb.offset + rt) mod264)

else
cd← cb with offset← (cb.offset + rt) mod264

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb or cd is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

• cb.tag and cb.s are both set.

Notes

• For security reasons, CIncOffset must not change the offset of a sealed capability.

• As a special case, we allow CIncOffset with an offset of zero to work on sealed capa-
bilities; this is so that CIncOffset can be used as a capability move instruction.
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• If the tag bit is not set, and the offset is being used to hold an integer, then CIncOffset

should still increment the offset. This is so that CIncOffset can be used to implement
increment of a intcap t type. In this case, the bit in the position corresponding to the
sealed bit will typically not be set.

• If the tag bit is not set, the capability register contains arbitrary non-capability data, and
the bit in the position corresponding to the sealed bit is set, we allow the operation to
succeed. (Although the effect on the non-capability data will depend on which binary
representation of capabilities is being used).

• If the tag bit is not set, and capability compression is in use, the arbitrary data in cb
might not decompress to sensible values of the base and length fields, and there is no
guarantee that retaining these values of base and length while changing offset will result
in a representable value.

From a software perspective, the requirement is that incrementing offset on an untagged
capability will work if base and length are zero. (This is how integers, and pointers that
have lost precision, will be represented). If base and length have non-zero values (or cb
cannot be decompressed at all), then the values of base and length after this instruction
are UNPREDICTABLE.

• In assembly language, CMove cd, cb is a pseudo-instruction that the assembler converts
to CIncOffset cd, cb, $zero.
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CJALR: Jump and Link Capability Register
Format

CJALR cb, cd
056101115162021252631

0x12 0x07 cd cb

Description

The current PCC (with an offset of the current PC + 8) is saved in cd. PCC is then loaded
from capability register cb and PC is set from its offset.

Pseudocode

if register inaccessible(cd) then
raise c2 exception(exceptionAccessSystem, cd)

else if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if cb.sealed then
raise c2 exception(exceptionSealed, cb)

else if not cb.perms.Permit Execute then
raise c2 exception(exceptionPermitExecute, cb)

else if cb.offset + 4 > cb.length then
raise c2 exception(exceptionLength, cb)

else if align of(cb.base + cb.offset) < 4 then
raise exception(exceptionAdEL)

else
cd← PCC with offset← PC + 8
execute branch pcc(cb.offset, cb)

end if

Exceptions

A coprocessor 2 exception will be raised if:

• cd is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

• cb.tag is not set.

• cb.s is set.

• cb.perms.Permit Execute is not set.
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• cb.offset + 4 is greater than cb.length.

An address error exception will be raised if

• cb.base + cb.offset is not 4-byte word aligned.

Notes

• cjalr has a branch delay slot.

• The change to PCC does not take effect until the instruction in the branch delay slot has
been executed.

134



CJR: Jump Capability Register
Format

CJR cb
056101115162021252631

0x12 0x08 cb

Description

PCC is loaded from cb, and PC is loaded from cb.offset.

Pseudocode

if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if cb.sealed then
raise c2 exception(exceptionSealed, cb)

else if not cb.perms.Permit Execute then
raise c2 exception(exceptionPermitExecute, cb)

else if cb.offset + 4 > cb.length then
raise c2 exception(exceptionLength, cb)

else if align of(cb.base + cb.offset) < 4 then
raise exception(exceptionAdEL)

else
execute branch pcc(cb.offset, cb)

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

• cb.tag is not set.

• cb.s is set.

• cb.perms.Permit Execute is not set.

• Register cb.offset + 4 is greater than cb.length.

An address error exception is raised if:

• cb.base + cb.offset is not 4-byte word aligned.

cb.base and cb.length are treated as unsigned integers, and the result of the addition does
not wrap around (i.e., an exception is raised if cb.base+cb.offset is greater than maxaddr).
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Load via Capability Register
Format

CLB rd, rt, offset(cb)
CLH rd, rt, offset(cb)
CLW rd, rt, offset(cb)
CLD rd, rt, offset(cb)
CLBU rd, rt, offset(cb)
CLHU rd, rt, offset(cb)
CLWU rd, rt, offset(cb)
CLBR rd, rt(cb)
CLHR rd, rt(cb)
CLWR rd, rt(cb)
CLDR rd, rt(cb)
CLBUR rd, rt(cb)
CLHUR rd, rt(cb)
CLWUR rd, rt(cb)
CLBI rd, offset(cb)
CLHI rd, offset(cb)
CLWI rd, offset(cb)
CLDI rd, offset(cb)
CLBUI rd, offset(cb)
CLHUI rd, offset(cb)
CLWUI rd, offset(cb)

013101115162021252631

0x32 rd cb rt offset s t

Purpose

Loads a data value via a capability register, and extends the value to fit the target register.

Description

The lower part of general-purpose register rd is loaded from the memory location specified by
cb.base + cb.offset + rt + 2t ∗ offset. Capability register cb must contain a valid capability that
grants permission to load data.

The size of the value loaded depends on the value of the t field:

0 byte (8 bits)

1 halfword (16 bits)

2 word (32 bits)

3 doubleword (64 bits)

The extension behavior depends on the value of the s field: 1 indicates sign extend, 0
indicates zero extend. For example, CLWU is encoded by setting s to 0 and t to 2, CLB is
encoded by setting s to 1 and t to 0.
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Pseudocode

if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if cb.sealed then
raise c2 exception(exceptionSealed, cb)

else if not cb.perms.Permit Load then
raise c2 exception(exceptionPermitLoad, cb)

else
if t = 0 then

size← 1
else if t = 1 then

size← 2
else if t = 2 then

size← 4
else if t = 3 then

size← 8
end if
cursor← (cb.base + cb.offset) mod264

addr← (cursor + rt + size ∗ sign extend(offset)) mod264

if addr + size > cb.base + cb.length then
raise c2 exception(exceptionLength, cb)

else if addr < cb.base then
raise c2 exception(exceptionLength, cb)

else if align of(addr) < size then
raise exception(exceptionAdEL)

else if s = 0 then
rd← zero extend(mem[addr .. addr + size − 1])

else
rd← sign extend(mem[addr .. addr + size − 1])

end if
end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

• cb.tag is not set.

• cb.s is set.

• cb.perms.Permit Load is not set.
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• addr + size > cb.base + cb.length
NB: The check depends on the size of the data loaded.

• addr < cb.base

An AdEL exception is raised if addr is not correctly aligned.

Notes

• This instruction reuses the opcode from the Load Word to Coprocessor 2 (LWC2) instruc-
tion in the MIPS Specification.

• rt is treated as an unsigned integer.

• offset is treated as a signed integer.

• BERI1 has a compile-time option to allow unaligned loads and stores. If BERI1 is built
with this option, an unaligned load will only raise an exception if it crosses a cache line
boundary.
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CLC: Load Capability Register
Format

CLC cd, rt, offset(cb)
CLCR cd, rt(cb)
CLCI cd, offset(cb)

056101115162021252631

0x36 cd cb rt offset

Description

Capability register cd is loaded from the memory location specified by cb.base + cb.offset
+ rt + offset. Capability register cb must contain a capability that grants permission to load
capabilities. The virtual address cb.base + cb.offset + rt + offset must be capability size
aligned.

The bit in the tag memory corresponding to cb.base + cb.offset + rt + offset is loaded into
the tag bit associated with cd.

Pseudocode

if register inaccessible(cd) then
raise c2 exception(exceptionAccessSystem, cd)

else if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if cb.sealed then
raise c2 exception(exceptionSealed, cb)

end if
cursor← (cb.base + cb.offset) mod264

addr← cursor + rt + 16 * sign extend(offset)
if addr + capability size > cb.base + cb.length then

raise c2 exception(exceptionLength, cb)
else if addr < cb.base then

raise c2 exception(exceptionLength, cb)
else if align of(addr) < capability size then

raise exception(exceptionAdEL)
else if TLB(addr).L or not cb.perms.Permit Load Capabiliity then

cd← bytes to cap(mem[addr .. addr + cap size − 1]) with tag← false
else

cd← bytes to cap(mem[addr .. addr + cap size − 1] with tag← tags[toTag(addr)]
end if

Exceptions

A coprocessor 2 exception is raised if:
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• cb or cd is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the
corresponding bit in PCC.perms is not set.

• cb.tag is not set.

• cb.s is set.

• addr + capability size > cb.base + cb.length.

• addr < cb.base.

An address error during load (AdEL) exception is raised if:

• The virtual address addr is not capability size aligned.

Notes

• This instruction reuses the opcode from the Load Doubleword to Coprocessor 2 (LDC2)
instruction in the MIPS Specification.

• offset is interpreted as a signed integer.

• The CLCI mnemonic is equivalent to CLC with cb being the zero register ($zero). The
CLCR mnemonic is equivalent to CLC with offset set to zero.

• Although the capability size can vary, the offset is always in multiples of 16 bytes (128
bits).
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Load Linked via Capability Register
Format

CLLB rd, cb
CLLH rd, cb
CLLW rd, cb
CLLD rd, cb
CLLBU rd, cb
CLLHU rd, cb
CLLWU rd, cb

01234101115162021252631

0x12 0x10 rd cb 1 s t

Description

CLL[BHWD][U] and CSC[BHWD] are used to implement safe access to data shared between
different threads. The typical usage is that CLL[BHWD][U] is followed (an arbitrary number of
instructions later) by CSC[BHWD] to the same address; the CSC[BHWD] will only succeed if the
memory location that was loaded by the CLL[BHWD][U] has not been modified.

The exact conditions under which CSC[BHWD] fails are implementation dependent, partic-
ularly in multicore or multiprocessor implementations). The following pseudocode is intended
to represent the security semantics of the instruction correctly, but should not be taken as a
definition of the CPU’s memory coherence model.

Pseudocode

addr← cb.base + cb.offset
size← 2t

if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if cb.sealed then
raise c2 exception(exceptionSealed, cb)

else if not cb.perms.Permit Load then
raise c2 exception(exceptionPermitLoad, cb)

else if addr + size > cb.base + cb.length then
raise c2 exception(exceptionLength, cb)

else if addr < cb.base then
raise c2 exception(exceptionLength, cb)

else if align of(addr) < size then
raise exception(exceptionAdEL)

else
if s = 0 then

rd← zero extend(mem[addr .. addr + size − 1])
else
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rd← sign extend(mem[addr .. addr + size − 1])
end if
linkedFlag← true

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

• cb.tag is not set.

• cb is sealed.

• cb.perms.Permit Load is not set.

• addr + size > cb.base + cb.length

• addr < cb.base

An AdEL exception is raised if addr is not correctly aligned.
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CLLC: Load Linked Capability via Capability
Format

CLLC cd, cb

023101115162021252631

0x12 0x10 cd cb 1111

Pseudocode

addr← (cb.base + cb.offset) mod264

if register inaccessible(cd) then
raise c2 exception(exceptionAccessSystem, cd)

else if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if cb.sealed then
raise c2 exception(exceptionSealed, cb)

else if addr + capability size > cb.base + cb.length then
raise c2 exception(exceptionLength, cb)

else if addr < cb.base then
raise c2 exception(exceptionLength, cb)

else if align of(addr) < capability size then
raise exception(exceptionAdEL)

else if TLB(addr).L or not cb.perms.Permit Load Capability then
cd← bytes to cap(mem[addr .. addr + capability size]) with tag← false
linkedFlag← true

else
cd← bytes to cap(mem[addr .. addr + capability size]) with tag← tags[toTag(addr)]
linkedFlag← true

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb or cd is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

• cb.tag is not set.

• cb is sealed.

• addr + capability size > cb.base + cb.length

• addr < cb.base
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An AdEL exception is raised if:

• addr is not capability aligned.

144



CMOVN: Conditionally move capability on non-zero
Format

CMOVN cd, cb, rt
056101115162021252631

0x12 0x0 cd cb rt 0x1c

Description

If rt 6== 0, cb is copied into cd.

Pseudocode

if register inaccessible(cd) then
raise c2 exception(exceptionAccessSystem, cd)

else if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if rt 6= 0 then
cd← cb

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb or cd is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

Notes

• Some implementations of cryptographic algorithms need a constant-time move operation
to avoid revealing secret key material through a timing channel. (An attacker must not be
able to determine whether a condition variable inside the cryptographic implementation
is true or false from observations of how long the operation took to complete). In the
current prototype implementation of CHERI, no guarantees are made about CMOVN being
constant time.

If CHERI instructions are to be used in high-security cryptographic processors, consid-
eration should be given to making this operation constant time.

145



CMOVZ: Conditionally move capability on zero
Format

CMOVZ cd, cb, rt
056101115162021252631

0x12 0x0 cd cb rt 0x1b

Description

If rt = 0, cb is copied into cd.

Pseudocode

if register inaccessible(cd) then
raise c2 exception(exceptionAccessSystem, cd)

else if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if rt = 0 then
cd← cb

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb or cd is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

Notes

• Some implementations of cryptographic algorithms need a constant-time move operation
to avoid revealing secret key material through a timing channel. (An attacker must not be
able to determine whether a condition variable inside the cryptographic implementation
is true or false from observations of how long the operation took to complete). In the
current prototype implementation of CHERI, no guarantees are made about CMOVZ being
constant time.

If CHERI instructions are to be used in high-security cryptographic processors, consid-
eration should be given to making this operation constant time.
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CPtrCmp: CEQ, CNE, CL[TE][U], CEXEQ: Capability Pointer Compare
Format

CEQ rd, cb, ct
CNE rd, cb, ct
CLT rd, cb, ct
CLE rd, cb, ct
CLTU rd, cb, ct
CLEU rd, cb, ct
CEXEQ rd, cb, ct

02356101115162021252631

0x12 0x0e rd cb ct t

Description

Capability registers cb and ct are compared, and the result of the comparison is placed in
general-purpose register rd. The rules for comparison are as follows:

• A capability with the tag bit unset is less than any capability with the tag bit set.

• Otherwise, the result of comparison is the result of comparing (base + offset) mod264

for the two capabilities. Numerical comparison is signed for CLT and CLE, and unsigned
for CLTU and CLEU.

• CExEq compares all the fields of the two capabilities, including tag and the bits that are
reserved for future use.

This instruction can be used to compare capabilities so that capabilities can replace pointers
in C executables.

Mnemonic t Comparison
CEQ 0 =
CNE 1 6=
CLT 2 < (signed)
CLE 3 ≤ (signed)
CLTU 4 < (unsigned)
CLEU 5 ≤ (unsigned)
CEXEQ 6 all fields are equal

Pseudocode

if t > 5 then
raise exception(reservedInstruction)

else if register inaccessible(cb) then
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raise c2 exception(exceptionAccessSystem, cb)
else if register inaccessible(ct) then

raise c2 exception(exceptionAccessSystem, ct)
else

if cb.tag 6= ct.tag then
equal← false
if cb.tag then

less← false
signed less← false

else
less← true
signed less← true

end if
else

cursor1← (cb.base + cb.offset) mod264

cursor2← (ct.base + ct.offset) mod264

equal← cursor1 = cursor2
less← cursor1 < cursor2
signed less← to signed64(cursor1) < to signed64(cursor2)

end if
if t = 0 then

rd← equal
else if t = 1 then

rd← not equal
else if t = 2 then

rd← signed less
else if t = 3 then

rd← signed less or equal
else if t = 4 then

rd← less
else if t = 5 then

rd← less or equal
else if t = 6 then

rd← cb = ct
else

raise exception(exceptionReservedInstruction)
end if

end if

Exceptions

A reserved instruction exception is raised if

• t does not correspond to comparison operation whose meaning has been defined.

A coprocessor 2 exception will be raised if:
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• cb or ct is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

Notes

• cltu can be used by a C compiler to compile code that compares two non-null pointers
(e.g., to detect whether a pointer to a character within a buffer has reached the end of
the buffer). When two pointers to addresses within the same object (e.g., to different
offsets within an array) are compared, the pointer to the earlier part of the object will be
compared as less. (Signed comparison would also work as long as the object did not span
address 263; the MIPS address space layout makes it unlikely that objects spanning 263

will exist in user-space C code).

• Although the ANSI C standard does not specify whether a NULL pointer is less than
or greater than a non-NULL pointer (clearly, they must not be equal), the comparison
instructions have been designed so that when C pointers are represented by capabilities,
NULL will be less than any non-NULL pointer.

• A C compiler may also use these instructions to compare two values of type uintptr t

that have been obtained by casting from an integer value. If the cast is compiled as a
CFromPtr of zero followed by CSetOffset to the integer value, the result of CPtrCmp
will be the same as comparing the original integer values, because CFromPtr will have
set base to zero. Signed and unsigned capability comparison operations are provided
so that both signed and unsigned integer comparisons can be performed on capability
registers.

• A program could use pointer comparison to determine the value of base, by setting offset
to different values and testing which values cause base + offset to wrap around and be
less than base + a zero offset. This is not an attack against a security property of the
ISA, because base is not a secret.

• One possible way in which garbage collection could be implemented is for the garbage
collector to move an object and fix up all capabilities that refer to it. If there are appropri-
ate restrictions on which capabilities the program has to start with, the garbage collector
can be sure that the program does not have any references to the object stored as integers,
and so can know that it is safe to move the object. With this type of garbage collection,
comparing pointers by extracting their base and offset with CGetBase and CGetOffset
and comparing the integer values is not guaranteed to work, because the garbage collec-
tor might have moved the object part-way through. CPtrCmp is atomic, and so will work
in this scenario.

• Some compilers may make the optimization that if a check for (a = b) has succeeded,
then b can be replaced with a without changing the semantics of the program. This
optimization is not valid for the comparison performed by CEq, because two capabilities
can point to the same place in memory but have different bounds, permissions etc. and so
not be interchangeable. The CExEq instruction is provided for when a test for semantic
equivalence of capabilities is needed; it compares all the fields, even the ones that are
reserved for future use.
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• Mathematically, CEq divides capabilities into equivalence classes, and the signed or
unsigned comparison operators provide a total ordering on these equivalence classes.
CExEq also divides capabilities into equivalence classes, but these are not totally ordered:
two capabilities can be unequal according to CExEq, and also neither less or greater ac-
cording to CLT (e.g., if they have the same base + offset, but different length).

• There is an outstanding issue: when capability compression is in use, does CExEq com-
pare the compressed representation or the uncompressed capability? There might be
a difference between the two if there are multiple compressed representations that de-
compress to the same thing. If tag is false, then then capability register might contain
non-capability data (e.g., an integer, or a string) and it might not decompress to any-
thing sensible. Clearly in this case the in-memory compressed representation should be
compared bit for bit. Is it also acceptable to compare the compressed representations
when tag is true? This might lead to two capabilities that are sematically equivalent but
have been computed by a different sequence of operations comparing as not equal. The
consequence of this for programs that use CExEq is for further study.

• If a C compiler compiles pointer equality as CExEq (rather than CEq), it will catch the
following example of undefined behavior. Suppose that a and b are capabilities for differ-
ent objects, but a has been incremented until its base + offset points to the same memory
location as b. Using CExEq, these pointers will not compare as equal because they have
different bounds.
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CReturn: Return to the Previous Security Domain

Format

CReturn

02021252631

0x12 0x06

Description

CReturn is used to return from a call into a protected subsystem. As defined, the instruction
simply triggers a specific CP2 exception via the CCall/CReturn exception vector, allowing a
software exception handler to implement any required functionality.

Pseudocode (hardware)

raise c2 exception noreg(exceptionReturn)

Exceptions

A coprocessor 2 exception will be raised so that the desired semantics can be implemented in a
trap handler. The capability exception code will be 0x06 and the handler vector will be 0x100
above the general-purpose exception handler.

Notes

• The CReturn instruction may be removed in a future version of the ISA specification
(though it might continue to exist as a pseudo-instruction in the assembler), to be replaced
by a specific selector in the CCall instruction.

• As with CCall, it is possible to imagine a number of points between this exception-based
implementation and a hardware-assisted implementation – e.g., with varying degrees of
architectural checking of return values, clearing of registers, etc. In implementing more
rich hardware functionalities, software flexibility to support a range of ABIs is reduced.

Expected Software Use

CReturn is designed to complement use of the CCall instruction with selector 0 – i.e., where
software implements a function-call-like domain-transition model. It is antipated that CReturn
software exception handlers will perform any sanitization of the register file, capability flow
control, “undo” actions taken in the CCall exception handler to restore execution to the instruc-
tion following CCall in the caller context, unsealing and/or installation of caller capabilities
so that it can continue execution in the original caller protection domain.

It is anticipated that software using CCall selector 1 for domain transition may wish to use
that same instruction for return, rather than CReturn.
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Sketch of the CheriBSD CReturn Model

As with CheriBSD’s CCall exception handler, the CheriBSD CReturn is implemented via a
short privileged exception handler. A frame is popped off of the trusted stack, allowing the
caller PCC and IDC to be restored, non-return capability and general-purpose registers are
cleared, and capability flow control is imposed on return capabilities to prevent non-global ca-
pabilities from being propagated across domain transition. The CheriBSD CReturn exception
handler operates as follows:

1. IDC is popped off the trusted system stack.

2. PCC is popped off the trusted system stack.

The CheriBSD CReturn can be modeled with the following pseudocode:
IDC← mem[TSS .. TSS + capability size − 1]
IDC.tag← tags[toTag(TSS)]
TSS← TSS + capability size
PCC← mem[TSS .. TSS + capability size − 1]
PCC.tag← tags[toTag(TSS)]
TSS← TSS + capability size
PC← PCC.offset

In addition to the coprocessor 2 exceptions listed above, a coprocessor 2 exception may be
raised by the software exception handler if:

• The trusted system stack would underflow.

• The tag bits are not set on the memory location that are popped from the stack into IDC
and PCC.

In addition, the CheriBSD CReturn handler checks the global bit on capability registers so
that CReturn cannot be used to leak local capabilities. It also clears non-return-value capability
and general-purpose registers.
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Store via Capability Register
Format

CSB rs, rt, offset(cb)
CSH rs, rt, offset(cb)
CSW rs, rt, offset(cb)
CSD rs, rt, offset(cb)
CSBR rs, rt(cb)
CSHR rs, rt(cb)
CSWR rs, rt(cb)
CSDR rs, rt(cb)
CSBI rs, offset(cb)
CSHI rs, offset(cb)
CSWI rs, offset(cb)
CSDI rs, offset(cb)

013101115162021252631

0x3A rs cb rt offset 0 t

Purpose

Stores some or all of a register into a memory location.

Description

Part of general-purpose register rs is stored to the memory location specified by cb.base +
cb.offset + rt + 2t ∗ offset. Capability register cb must contain a capability that grants permis-
sion to store data.

The t field determines how many bits of the register are stored to memory:

0 byte (8 bits)

1 halfword (16 bits)

2 word (32 bits)

3 doubleword (64 bits)

If less than 64 bits are stored, they are taken from the least-significant end of the register.

Pseudocode

if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if cb.sealed then
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raise c2 exception(exceptionSealed, cb)
else if not cb.Permit Store then

raise c2 exception(exceptionPermitStore, cb)
end if
if t = 0 then

size← 1
else if t = 1 then

size← 2
else if t = 2 then

size← 4
else if t = 3 then

size← 8
end if
cursor← (cb.base + cb.offset) mod264

addr← (cursor + rt + size ∗ sign extend(offset)) mod264

if addr + size > cb.base + cb.length then
raise c2 exception(exceptionLength, cb)

else if addr < cb.base then
raise c2 exception(exceptionLength, cb)

else if align of(addr) < size then
raise exception(exceptionAdES)

else
mem[addr .. addr + size − 1]← rs[0 .. size − 1]
tags[toTag(addr)]← false

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

• cb.tag is not set.

• cb.s is set.

• cb.perms.Permit Store is not set.

• addr + size > cb.base + cb.length.

• addr < cb.base

An address error during store (AdES) is raised if:

• addr is not aligned.
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Notes

• This instruction reuses the opcode from the Store Word from Coprocessor 2 (SWC2) in-
struction in the MIPS Specification.

• rt is treated as an unsigned integer.

• offset is treated as a signed integer.

• BERI1 has a compile-time option to allow unaligned loads and stores. If BERI1 is built
with this option, an unaligned store will only raise an exception if it crosses a cache line
boundary.
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CSC: Store Capability Register
Format

CSC cs, rt, offset(cb)
CSCR cs, rt(cb)
CSCI cs, offset(cb)

056101115162021252631

0x3e cs cb rt offset

Description

Capability register cs is stored at the memory location specified by cb.base + cb.offset + rt
+ 16 ∗ offset, and the bit in the tag memory associated with cb.base + cb.offset + rt + 16 ∗
offset is set to the value of cs.tag. Capability register cb must contain a capability that grants
permission to store capabilities. The virtual address cb.base + cb.offset + rt + 16 ∗ offset must
be capability size aligned.

When the 256-bit representation of capabilities is in use, the capability is stored in memory
in the format described in Figure 4.2. base, length and otype are stored in memory with the
same endian-ness that the CPU uses for double-word stores, i.e., big-endian. The bits of perms
are stored with bit zero being the least significant bit, so that the least significant bit of the eighth
byte stored is the s bit, the next significant bit is the Global bit, the next is Permit Execute and
so on.

Pseudocode

if register inaccessible(cs) then
raise c2 exception(exceptionAccessSystem, cs)

else if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if cb.sealed then
raise c2 exception(exceptionSealed, cb)

else if not cb.perms.Permit Store Capability then
raise c2 exception(exceptionPermitStoreCapability, cb)

else if not cb.perms.Permit Store Local Capability and cs.tag and not cs.perms.Global then
raise c2 exception(exceptionPermitStoreLocalCapability, cb)

end if
cursor← (cb.base + cb.offset) mod264

addr← cursor + rt + 16 ∗ sign extend(offset)
if addr + capability size > cb.base + cb.length then

raise c2 exception(exceptionLength, cb)
else if addr < cb.base then

raise c2 exception(exceptionLength, cb)
else if cs.tag and TLB(addr).S then

raise c2 exception(exceptionTLBStore, cs)
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else if align of(addr) < capability size then
raise exception(exceptionAdES)

else
mem[addr .. addr + capability size − 1]← cap to bytes(cs)
tags[toTag(addr)]← cs.tag

end if

Exceptions

A coprocessor 2 exception is raised if:

• cs or cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and the
corresponding bit in PCC.perms is not set.

• cb.tag is not set.

• cb.s is set.

• cb.perms.Permit Store Capability is not set.

• cb.perms.Permit Store Local is not set and cs.tag is set and cs.perms.Global is not set.

• addr + capability size > cb.base + cb.length.

• addr < cb.base. destination address is set.

A TLB Store exception is raised if:

• cs.tag is set and the S bit in the TLB entry for the page containing addr is not set.

An address error during store (AdES) exception is raised if:

• The virtual address addr is not capability size aligned.

Notes

• If the address alignment check fails and one of the security checks fails, a coprocessor 2
exception (and not an address error exception) is raised. The priority of the exceptions
is security-critical, because otherwise a malicious program could use the type of the
exception that is raised to test the bottom bits of a register that it is not permitted to
access.

• It is permitted to store a local capability with the tag bit unset even if the permit store
local bit is not set in cb. This is because if the tag bit is not set then the permissions have
no meaning.

• offset is interpreted as a signed integer.

• This instruction reuses the opcode from the Store Doubleword from Coprocessor 2 (SDC2)
instruction in the MIPS Specification.
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• The CSCI mnemonic is equivalent to CSC with cb being the zero register ($zero). The
CSCR mnemonic is equivalent to CSC with offset set to zero.

• BERI1 has a compile-time option to allow unaligned loads and stores. CSC to an un-
aligned address will raise an exception even if BERI1 has been built with this option,
because it would be a security vulnerability if an attacker could construct a corrupted
capability with tag set by writing it to an unaligned address.

• Although the capability size can vary, the offset is always in multiples of 16 bytes (128
bits).
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CSC[BHWD]: Store Conditional via Capability
Format

CSCB rd, rs, cb
CSCH rd, rs, cb
CSCW rd, rs, cb
CSCD rd, rs, cb

0123456101115162021252631

0x12 0x10 rs cb rd 00 t

Pseudocode

addr← cb.base + cb.offset
size← 2t

if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if cb.sealed then
raise c2 exception(exceptionSealed, cb)

else if not cb.perms.Permit Store then
raise c2 exception(exceptionPermitStore, cb)

else if addr + size > cb.base + cb.length then
raise c2 exception(exceptionLength, cb)

else if addr < cb.base then
raise c2 exception(exceptionLength, cb)

else if align of(addr) < size then
raise exception(exceptionAdES)

else if not linkedFlag then
rd← 0

else
mem[addr .. addr + size − 1]← rs[0 .. size − 1]
tags[toTag(addr)]← false
rd← 1

end if
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CSCC: Store Conditional Capability via Capability
Format

CSCC rd, cs, cb
02356101115162021252631

0x12 0x10 cs cb rd 0111

Pseudocode

addr← (cb.base + cb.offset) mod264

if register inaccessible(cs) then
raise c2 exception(exceptionAccessSystem, cs)

else if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if cb.sealed then
raise c2 exception(exceptionSealed, cb)

else if not cb.perms.Permit Store Capability then
raise c2 exception(exceptionPermitStoreCapability, cb)

else if not cb.perms.Permit Store Local Capability and cs.tag and not cs.perms.Global then
raise c2 exception(exceptionPermitStoreLocalCapability, cb)

else if addr + capability size > cb.base + cb.length then
raise c2 exception(exceptionLength, cb)

else if addr < cb.base then
raise c2 exception(exceptionLength, cb)

else if cs.tag and TLB(addr).S then
raise c2 exception(exceptionTLBStore, cs)

else if align of(addr) < capability size then
raise exception(exceptionAdES)

else if not linkedFlag then
rd← 0

else
mem[addr .. addr + capability size − 1]← cap to bytes(cs)
tags[toTag(addr)]← cs.tag
rd← 1

end if

Exceptions

A coprocessor 2 exception is raised if:

• cs or cb is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

• cb.tag is not set.
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• cb.s is set.

• cb.perms.Permit Store Capability is not set.

• cb.perms.Permit Store Local Capability is not set and cs.perms.Global is not set.

• addr + capability size > cb.base + cb.length

• addr < cb.base

A TLB Store exception is raised if:

• The S bit in the TLB entry corresponding to virtual address addr is not set.

An address error during store (AdES) exception is raised if:

• addr is not correctly aligned.

161



CSeal: Seal a Capability
Format

CSeal cd, cs, ct
056101115162021252631

0x12 0x02 cd cs ct

Description

Capability register cs is sealed with an otype of ct.base + ct.offset and the result is placed in
cd:

• cd.otype is set to ct.base + ct.offset;

• cd.s is set;

• and the other fields of cd are copied from cs.

ct must grant Permit Seal permission, and the new otype of cd must be between ct.base
and ct.base + ct.length − 1.

Pseudocode

if register inaccessible(cd) then
raise c2 exception(exceptionAccessSystem, cd)

else if register inaccessible(cs) then
raise c2 exception(exceptionAccessSystem, cs)

else if register inaccessible(ct) then
raise c2 exception(exceptionAccessSystem, ct)

else if not cs.tag then
raise c2 exception(exceptionTag, cs)

else if not ct.tag then
raise c2 exception(exceptionTag, ct)

else if cs.sealed then
raise c2 exception(exceptionSealed, cs)

else if ct.sealed then
raise c2 exception(exceptionSealed, ct)

else if not ct.perms.Permit Seal then
raise c2 exception(exceptionPermitSeal, ct)

else if ct.offset ≥ ct.length then
raise c2 exception(exceptionLength, ct)

else if ct.base + ct.offset > max otype then
raise c2 exception(exceptionLength, ct)

else if not representable(true, cs.base, cs.length, cs.offset) then
raise c2 exception(exceptionInexact, cs)

else
cd← cs with sealed← true, otype← ct.base + ct.offset

end if

162



Exceptions

A coprocessor 2 exception is raised if:

• cd, cs, or ct is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
the corresponding bit in PCC.perms is not set.

• cs.tag is not set.

• ct.tag is not set.

• cs.s is set.

• ct.s is set.

• ct.perms.Permit Seal is not set.

• ct.offset ≥ ct.length

• ct.base + ct.offset > max otype

• The bounds of cb cannot be represented exactly in a sealed capability.

Notes

• If capability compression is in use, the range of possible (base, length, offset) values
might be smaller for sealed capabilities than for unsealed capabilities. This means that
CSeal can fail with an exception in the case where the bounds are no longer precisely
representable.
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CSetBounds: Set Bounds
Format

CSetBounds cd, cb, rt
02356101115162021252631

0x12 0x01 cd cb rt

Description

Capability register cd is replaced with a capability that:

• Grants access to a subset of the addresses authorized by cb. That is, cd.base ≥ cb.base
and cd.base + cd.length ≤ cb.base + cb.length.

• Grants access to at least the addresses cb.base + cb.offset . . . cb.base + cb.offset + rt −
1. That is, cd.base≤ cb.base + cb.offset and cd.base + cd.length≥ cb.base + cb.offset
+ rt.

• Has an offset that points to the same memory location as cb’s offset. That is, cd.offset =
cb.offset + cb.base - cd.base.

• Has the same perms as cb, that is, cd.perms = cb.perms.

When the hardware uses a 256-bit representation for capabilities, the bounds of the destina-
tion capability cd are exactly as requested. When the hardware uses a smaller (compressed) rep-
resentation of capabilities in which not all combinations of base and length are representable,
then cd may grant access to a range of memory addresses that is wider than requested, but is
still guaranteed to be within the bounds of cb.

Pseudocode (256-bit capabilities)

cursor← (cb.base + cb.offset) mod264

if register inaccessible(cd) then
raise c2 exception(exceptionAccessSystem, cd)

else if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if cb.sealed then
raise c2 exception(exceptionSealed, cb)

else if cursor < cb.base then
raise c2 exception(exceptionLength, cb)

else if cursor + rt > cb.base + cb.length then
raise c2 exception(exceptionLength, cb)

else
cd← cb with base← cursor, length← rt, offset← 0

end if
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Exceptions

A coprocessor 2 exception is raised if:

• cb or cd is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

• cb.tag is not set.

• cb.s is set.

• cursor < cb.base

• cursor + rt > cb.base + cb.length

Notes

• In the above pseudocode, arithmetic is over the mathematical integers and rt is unsigned,
so a large value of rt cannot cause cursor + rt to wrap around and be less than cb.base.
Implementations (that, for example, will probably use a fixed number of bits to store
values) must handle this overflow case correctly.
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CSetBoundsExact: Set Bounds Exactly
Format

CSetBoundsExact cd, cb, rt
02356101115162021252631

0x12 0x00 cd cb rt 0x9

Description

Capability register cd is replaced with a capability with base cb.base+ cb.offset, length rt,
and offset zero. When capability compression is in use, an exception is thrown if the requested
bounds cannot be represented exactly.

Pseudocode

cursor← (cb.base + cb.offset) mod264

if register inaccessible(cd) then
raise c2 exception(exceptionAccessSystem, cd)

else if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if cb.sealed then
raise c2 exception(exceptionSealed, cb)

else if cursor < cb.base then
raise c2 exception(exceptionLength, cb)

else if cursor + rt > cb.base + cb.length then
raise c2 exception(exceptionLength, cb)

else if not representable(cb.sealed, cb.base + cb.offset, rt, 0) then
raise c2 exception(exceptionInexact, cb)

else
cd← cb with base← cursor, length← rt, offset← 0

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb or cd is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

• cb.tag is not set.

• cb.s is set.

• cursor < cb.base

• cursor + rt > cb.base + cb.length
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• The requested bounds cannot be represented exactly.

Notes

• In the above pseudocode, arithmetic is over the mathematical integers and rt is unsigned,
so a large value of rt cannot cause cursor + rt to wrap around and be less than cb.base.
Implementations (that, for example, will probably use a fixed number of bits to store
values) must handle this overflow case correctly.
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CSetCause: Set the Capability Exception Cause Register
Format

CSetCause rt
02356101115162021252631

0x12 0x04 0x00 0x00 rt 0x4

Description

The capability cause register value is set to the low 16 bits of general-purpose register rt.

Pseudocode

if not PCC.perms.Access System Registers then
raise c2 exception noreg(exceptionAccessSystem)

else
CapCause← rt[0 .. 15]

end if

Exceptions

A coprocessor 2 exception is raised if:

• PCC.perms.Access System Registers is not set.

Notes

• CSetCause does not cause an exception to be raised (unless the permission check for
Access System Registers fails). CSetCause will typically be used in an exception han-
dler, where the exception handler wants to change the cause code set by the hardware
before doing further exception handling. (e.g., when the original cause code was CCall,
the CCall handler detects that CCall should fail, and it sets CapCause to the reason
it failed). In cases like this, it is important that EPC (etc.) are not overwritten by
CSetCause.

168



CSetOffset: Set Cursor to an Offset from Base
Format

CSetOffset cd, cb, rt
02356101115162021252631

0x12 0x0d cd cb rt 0x1

Description

Capability register cd is replaced with the contents of capability register cb with the offset field
set to the contents of general purpose register rt.

If capability compression is in use, and the requested base, length and offset cannot be
represented exactly, then cd.tag is cleared, cd.base and cd.length are set to zero, cd.perms is
cleared and cd.offset is set equal to cb.base+ rt.

Pseudocode

if register inaccessible(cd) then
raise c2 exception(exceptionAccessSystem, cd)

else if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if cb.tag and cb.sealed then
raise c2 exception(exceptionSealed, cb)

else if not representable(cb.sealed, cb.base, cb.length, rt) then
cd← int to cap((cb.base + rt) mod264)

else
cd← cb with offset← rt

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb or cd is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

• cb.tag is set and cb.s is set.

Notes

• CSetOffset can be used on a capability register whose tag bit is not set. This can be
used to store an integer value in a capability register, and is useful when implementing a
variable that is a union of a capability and an integer (intcap t in C). The in-memory
representation that will be used if the capability register is stored to memory might be
surprising to some users (with the 256-bit representation of capabilities, base + offset is
stored in the cursor field in memory) and may change if the memory representation of
capabilities changes, so compilers should not rely on it.
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• When capability compression is in use, and the requested offset is not representable, the
result preserves the requested base + offset (i.e., the cursor) rather than the architectural
field offset. This field is mainly useful for debugging what went wrong (the capability
cannot be dereferenced, as tag has been cleared), and for debugging we considered it
more useful to know what the requested capability would have referred to rather than
its offset relative to a base that is no longer available. This has the disadvantage that it
exposes the value of base to a program, but base is not a secret and can be accessed by
other means. The main reason for not exposing base to programs is so that a garbage
collector can stop the program, move memory, modify the capabilities and restart the
program. A capability with tag cleared cannot be dereferenced, and so is not of interest
to a garbage collector, and so it doesn’t matter if it exposes base.
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CSub: Subtract Capabilities
Format

CSub rd, cb, ct
056101115162021252631

0x12 0x0 rd cb ct 0xa

Description

Register rd is set equal to (cb.base + cb.offset − ct.base − ct.offset) mod264.

Pseudocode

if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if register inaccessible(ct) then
raise c2 exception(exceptionAccessSystem, ct)

else
rd← (cb.base + cb.offset − ct.base − ct.offset) mod264

end if

Exceptions

A coprocessor 2 exception is raised if:

• cb or ct is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

Notes

• CSub can be used to implement C-language pointer subtraction, or subtraction of intcap t.

• Like CIncOffset, CSub can be used on either valid capabilities (tag set) or on integer
values stored in capability registers (tag not set).

• If a copying garbage collector is in use, pointer subtraction must be implemented with an
atomic operation (such as CSub). Implementing pointer subtraction with a non-atomic
sequence of operations such as CGetOffset has the risk that the garbage collector will
relocate an object part way through, giving incorrect results for the pointer difference. If
cb and ct are both pointers into the same object, then a copying garbage collector will
either relocate both of them or neither of them, leaving the difference the same. If cb and
ct are pointers into different objects, the result of the subtraction is not defined by the
ANSI C standard, so it doesn’t matter if this difference changes as the garbage collector
moves objects.

171



CToPtr: Capability to Pointer

Format

CToPtr rd, cb, ct

056101115162021252631

0x12 0x0c rd cb ct

Description

If cb has its tag bit unset (i.e. it is either the NULL capability, or contains some other non-
capability data), or the range of cb is not contained within the range of ct, then rd is set to zero.
Otherwise, rd is set to cb.base + cb.offset - ct.base

This instruction can be used to convert a capability into a pointer that uses the C language
convention that a zero value represents the NULL pointer. Note that rd will also be zero if
cb.base + cb.offset = ct.base; this is similar to the C language not being able to distinguish a
NULL pointer from a pointer to a structure at address 0.

Pseudocode

if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if register inaccessible(ct) then
raise c2 exception(exceptionAccessSystem, ct)

else if not ct.tag then
raise c2 exception(exceptionTag, ct)

else if not cb.tag then
rd← 0

else if cb.sealed then
raise c2 exception(exceptionSealed, cb)

else if cb.base < ct.base then
rd← 0

else if cb.base + cb.length > ct.base + ct.length then
rd← 0

else
rd← (cb.base + cb.offset − ct.base) mod264

end if

Exceptions

A coprocessor 2 exception will be raised if:

• cb or ct is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
PCC.perms.Access System Registers is not set.

• ct.tag is not set.

172



Notes

• ct being sealed will not cause an exception to be raised. This is for further study.

• This instruction has two different means of returning an error code: raising an exception
(if ct.tag is not set, or the registers are not accessible) and returning a NULL pointer (if
the range of cb is outside the range of ct.

• If the range of cb is outside the range of ct, a pointer relative to ct can’t always be used in
place of cb: some reads or writes will fail because they are outside the range of ct. The
check on the range of cb is to catch this error condition early and cleanly (the application
can check that the result of CToPtr is not NULL), rather than an exception being raised
when the pointer is dereferenced.
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CUnseal: Unseal a Sealed Capability
Format

CUnseal cd, cs, ct
056101115162021252631

0x12 0x03 cd cs ct

Description

The sealed capability in cs is unsealed with ct and the result placed in cd. The global bit of cd
is the AND of the global bits of cs and ct. ct must be unsealed, have Permit Seal permission,
and ct.base + ct.offset must equal cs.otype.

Pseudocode

if register inaccessible(cd) then
raise c2 exception(exceptionAccessSystem, cd)

else if register inaccessible(cs) then
raise c2 exception(exceptionAccessSystem, cs)

else if register inaccessible(ct) then
raise c2 exception(exceptionAccessSystem, ct)

else if not cs.tag then
raise c2 exception(exceptionTag, cs)

else if not ct.tag then
raise c2 exception(exceptionTag, ct)

else if not cs.sealed then
raise c2 exception(exceptionSealed, cs)

else if ct.sealed then
raise c2 exception(exceptionSealed, ct)

else if ct.base + ct.offset 6= cs.otype then
raise c2 exception(exceptionType, ct)

else if not ct.perms.Permit Seal then
raise c2 exception(exceptionPermitSeal, ct)

else if ct.offset ≥ ct.length then
raise c2 exception(exceptionLength, ct)

else
cd← cs with sealed← false, otype← 0, perms← cs.perms.Global and ct.perms.Global

end if

Exceptions

A coprocessor 2 exception is raised if:

• cd, cs, or ct is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
the corresponding bit in PCC.perms is not set.

• cs.tag is not set.

174



• ct.tag is not set.

• cs.s is not set.

• ct.s is set.

• ct.offset ≥ ct.length

• ct.perms.Permit Seal is not set.

• ct.base + ct.offset 6= cs.otype.

Notes

• There is no need to check if ct.base + ct.offset > max otype, because this can’t happen:
ct.base + ct.offset must equal cs.otype for the otype check to have suceeded, and there
is no way cs.otype could have been set to a value that is out of range.

5.7 Assembler Pseudo-Instructions
For convenience, several pseudo-instructions are accepted by the assembler. These expand to
either single instructions or short sequences of instructions.

5.7.1 CMove
Capability Move

CMove is a pseudo operation that moves a capability from one register to another. It expands to
a CIncOffset instruction, with $zero as the increment operand.

 # The following are equivalent:
 CMove $c1, $c2
 CIncOffset $c1, $c2, $zero

5.7.2 CGetDefault, CSetDefault
Get/Set Default Capability

CGetDefault and CSetDefault get and set the capability register that is implicitly employed
by the legacy MIPS load and store instructions. In the current version of the ISA, this register
is C0. These pseudo-operations are provided for the benefit of the LLVM compiler: the com-
piler can more easily detect that a write to C0 affects the meaning of subsequent legacy MIPS
instructions if these are separate pseudo-operations.

 # The following are equivalent:
 CGetDDC $c1
 CGetDefault $c1
 CIncOffset $c1, $c0, $zero
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 # The following are equivalent:
 CSetDDC $c1
 CSetDefault $c1
 CIncOffset $c0, $c1, $zero

5.7.3 CGetEPCC, CSetEPCC
Get/Set Exception Program Counter Capability

Pseudo-operations are provided for getting and setting EPCC. In the current ISA, EPCC is a
numbered register and so can be accessed with CMove, but in future revisions of the ISA it
might be moved to a special register (similar to PC not being a numbered register in the MIPS
ISA).

 # The following are equivalent:
 CGetEPCC $c1
 CIncOffset $c1, $epcc, $zero

 # The following are equivalent:
 CSetEPCC $c1
 CIncOffset $epcc, $c1, $zero

5.7.4 GGetKCC, CSetKCC
Get/Set Kernel Code Capability

 # The following are equivalent:
 CGetKCC $c1
 CIncOffset $c1, $kcc, $zero

 # The following are equivalent:
 CSetKCC $c1
 CIncOffset $kcc, $c1, $zero

5.7.5 CGetKDC, CSetKDC
Get/Set Kernel Data Capability

 # The following are equivalent:
 CGetKDC $c1
 CIncOffset $c1, $kdc, $zero

 # The following are equivalent:
 CSetKDC $c1
 CIncOffset $kdc, $c1, $zero

5.7.6 Capability Loads and Stores of Floating-Point Values
The current revision of the CHERI ISA does not have instructions for loading floating point
values directly via capabilities. MIPS does provide instructions for moving values between
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integer and floating point registers, so a load or store of a floating point value via a capability
can be implemented in two instructions.

Four pseudo-instructions are defined to implement these patterns. These are clwc1 and
cldc1 for loading 32-bit and 64-bit floating point values, and cswc1 and csdc1 as the equiv-
alent store operations. The load operations expand as follows:

 cldc1 $f7, $zero, 0($c2)
 # Expands to:
 cld $1, $zero, 0($c2)
 dmtc1 $1, $f7

Note that integer register $1 ($at) is used; this pseudo-op is unavailable if the noat direc-
tive is used. The 32-bit variant (clwc1) has a similar expansion, using clwu and mtc1.

The store operations are similar:

 csdc1 $f7, $zero, 0($c2)
 # Expands to:
 dmfc1 $1, $f7
 csd $1, $zero, 0($c2)

The specified floating point value is moved from the floating point register to $at and then
stored using the correct-sized capability instruction.
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Chapter 6

CHERI and Non-MIPS ISAs

In this chapter, we consider potential applications of the CHERI protection model to additional
Instruction-Set Architectures (ISAs) beyond 64-bit MIPS. These applications are sketches rather
than fully elaborated designs, but serve to illuminate the design space around integrating the
model into an ISA, and also to show how specific architectural choices in those ISAs interact
with the CHERI protection model. Throughout, the aim is to preserve the key properties of the
abstract CHERI model regardless of ISA: strong compatibility with MMU-based, C-language
TCBs; strong fine-grained memory protection supporting language properties; and incremen-
tally deployable, scalable, fine-grained compartmentalization. This should allow the construc-
tion of portable, CHERI-aware software stacks that have consistent protection properties across
a range of underlying architectures and architectural integration strategies.

6.1 Design Considerations
ISAs vary substantially in their representation and semantics, but have certain common aspects:

• One or more operation encoding (opcode) spaces representing specific instructions as
fetched from memory;

• A set of architectural registers managed by a compiler or hand-crafted assembly code,
which hold intermediate values during computations;

• Addressable memory, reached via a variety of segmentation and paging mechanisms that
allow [optional] implementation of virtual addressing;

• An instruction set allowing memory values to be loaded and stored, values to be com-
puted upon, control flow to be manipulated, and so on, with respect to both general-
purpose and floating-point values – and vectors of values for an increasing number of
ISAs;

• An exception mechanism allowing both synchronous exceptions (e.g., originating from
instructions such as divide-by-zero, system calls, unimplemented instructions, and page-
table misses) and asynchronous events from outside of the instruction flow (timers, inter-
processor interrupts, and external I/O interrupts) that cause a controlled transition to a
supervisor;
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• A set of control instructions or other (perhaps memory-mapped) interfaces permitting
interaction with the boot environment, management of interrupt mechanisms, privileged
state, virtual addressing features, timers, debugging features, energy management fea-
tures, and performance-profiling features.

Depending on the architecture, these might be strictly part of the ISA (e.g., implemented
explicit instructions to flush the TLB, mask interrupts, or reset the register state), or
they may be part of a broader platform definition with precise architectural behavior
dependent on the specific processor vendor (e.g., having firmware interfaces that flush
TLBs or control interrupt state, or register values at the start of OS boot rather than CPU
reset).

Implementations of these concepts in different ISAs differ markedly: opcodes may be of
fixed or variable lengths; instructions might strictly separate or combine memory access and
computation; page tables may be a purely software or architectural constructs; and so on. De-
spite these differences in underlying software representation, a large software corpus (imple-
mented in both low-level languages (e.g., C, C++) and higher-level managed languages – e.g.,
Java) can be written and maintained in a portable manner across multiple mainstream architec-
tures.

The CHERI protection model is primarily a transformation of memory access mechanisms
in the instruction set, substituting a richer capability mechanism for integer pointers used with
load and store instructions (as well as instruction fetch). However, it has broad impact across
all of the above ISA aspects, as it is by design explicitly integrated with register use (to ensure
intentionality of access) rather than implicit in existing memory access (as is the case with
virtual memory). CHERI must also integrate with the exception mechanism, as handling an
exception implies a change in effective protection domain, control of privileged operations
such as management of virtual memory, and so on.

CHERI-MIPS is an application of the CHERI protection model to the 64-bit MIPS ISA.
CHERI-MIPS is grounded in MIPS’s load-storage architecture (instructions either load/store
data with respect to memory, or compute on register values, but never both), the software-
managed TLB (page tables are a purely software construct), and the MIPS ISA “coprocessor”
opcode space reserved for ISA extensions. As a result, a number of concrete design choices are
made that are in many ways specific to MIPS: a decision to separate general-purpose integer
files and capability register files; occupation of the coprocessor opcode space; and TLB rather
than page-table additions to control the use of capabilities. These low-level design choices
will apply to only a limited degree in other ISAs – but the objectives achieved through these
choices must also appear in other ISAs implementing the CHERI model: explicit use of capa-
bilities for addressing relative to virtual-address spaces, monotonicity enforcement via guarded
manipulation, tagged memory protecting valid pointer provenance in memory, suitable sup-
port in the exception mechanism to allow current OS approaches combining user and kernel
virtual-address spaces, and so on.

In the following sections we present high-level sketches of applications of the CHERI pro-
tection model to two quite different ISAs: RISC-V, a contemporary load-store instruction set
(which in many ways is a descendant of the MIPS ISA); and the x86-64 ISA (which has largely
independent lineage of Complex Instruction Set (CISC) architectures). The CHERI model
applies relatively cleanly to both, with many options available in how specifically to apply
its approach, and yet with a consistent overall set of implications for software-facing design
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choices. Wherever possible, we aim to support the same operating-system, language, compiler,
run-time, and application protection and security benefits, which will be represented differ-
ently in machine code and low-level software support, but be largely indistinguishable from a
higher-level programming perspective. These instantiations should retain the highly compatible
strong protection and compartmentalization scalability properties seen with CHERI extensions
for MIPS.

It is possible to imagine less tight integration of CHERI’s features with the instruction set.
Microcontrollers, for example, are subject to tighter constraints on area and power, and yet
might benefit from the use of capabilities when sharing memory with software running on a
fully CHERI-integrated application processor. For example, a microcontroller might perform
DMA on behalf of a CHERI-compiled application, and therefore desire to constrain its access
to those possible through capabilities provided by the application. In this scenario, a less com-
plete integration might serve the purposes of that environment, such as by providing a small
number of special capability registers sufficient to perform capability-based loads and stores,
or to perform tag-preserving memory copies, but not intended to be used for the majority of
general-purpose operations in a small, fixed-purpose program for which strong static check-
ing or proof of correctness may be possible. We discuss further potential decompositions of
CHERI’s protections in Chapter 7.

6.2 CHERI-RISC-V
In this section we consider potential applications of the CHERI protection model to the RISC-
V ISA, exploring a possible integration based on our 64-bit MIPS experience. RISC-V is a
contemporary open-source architecture developed at the University of California at Berkeley.
RISC-V is intended to be used with a range of microprocessors spanning small 32-bit micro-
controllers intended for embedded applications to larger 64-bit superscalar processors intended
for use in datacenter computing. The RISC-V ISA is reminiscent of MIPS, with some im-
portant differences: a more modular design allows the ISA to be more easily subsetted and
extended; a variable-length instruction encoding improves code density; the MMU has a hard-
ware page-table walker rather than relying on software TLB management; the ISA avoids ex-
posing pipelining behaviors to software (e.g., there is no branch-delay slot); and a richer set of
supervisor functions includes platform description and peripheral enumeration. At the time of
writing, the RISC-V userspace ISA has been standardized (v2.2) [99], but the privileged ISA
remains under development (v1.10) [100].

6.2.1 RISC-V ISA Variants

The RISC-V ISA defines both 32-bit and 64-bit base integer instruction sets (RV32I, RV64I).
As with MIPS, we choose to define CHERI support with respect only to the 64-bit ISA, in
order to have access to a large virtual address space1. Our definition of CHERI-RISC-V should
work with either 32-register or 16-register (RV64E) variants of RISC-V. We describe CHERI
as applied to RV64G, which consists of the general-purpose elements of the 64-bit RISC-V

1We have begun to consider the potential implications of a variant of CHERI with respect to 32-bit virtual
addresses on MIPS, and believe that there are sensible scaled down variants, but do not pursue the approach in
this sketch.

181



ISA: integer, multiplication and division, atomic, floating-point, and double floating-point in-
structions. We also describe extensions to RV64S, the draft privileged portion of the ISA.

6.2.2 Tagged Capabilities and Memory
In CHERI-MIPS, we allow both registers and memory to hold tagged capabilities, allowing
capabilities and data to be intermingled. This allows capabilities to be embedded within
in-memory data structures, and supports the implementation of capability-oblivious memory
copy operations. We recommend that the same approach be taken in CHERI-RISC-V, as this
will maintain strong C-language pointer compatibility for capabilities. This implies the use
of tagged memory as in CHERI-MIPS, consisting of 1-bit tags protecting capability-aligned,
capability-sized words of memory in CHERI-RISC-V, implemented with suitable protection
and atomicity properties.

In 64-bit MIPS, we define both 128-bit and 256-bit capability format variants, offering
varying degrees of precision and space for additional metadata. Based on the success of the
CHERI-128 format in running a full suite of software including CheriBSD operating system
and large applications such as the Postgres database and nginx web server, we choose to de-
fine only 128-bit capabilities in CHERI-RISC-V. RISC-V v2.1 suggests a future RV128 ISA
variant might support a 128-bit address space; it seems plausible that 256-bit CHERI capa-
bilities might incorporate compressed 128-bit pointers in a manner similar to our CHERI-128
capability compression model.

6.2.3 Merged Register Files
In 64-bit MIPS, we introduce an additional capability register file to hold tagged 128-bit or
256-bit capability registers. In 64-bit RISC-V, we are presented with a choice: introduce a
new register file (e.g., as occurs with the RISC-V F extension for floating point), or extend the
existing general-purpose registers in the base instruction set (as occurs in the RV64 extension).

Based on experience extending 64-bit MIPS, we recommend a merged register file, allowing
general-purpose registers to optionally hold full capabilities, along with a tag, reducing the
amount of control logic otherwise required (by avoiding an additional register file). This also
reduces the size of register context growth, but does require us to avoid a design choice made
in CHERI-MIPS in which certain general capability registers have reserved functions, such
as DDC and EPCC. These must instead be accessed via capability control and status registers
(CSRs), which offers two further advantages: the number of capability registers can more easily
be varied (e.g., in RV64E), and the special behavior of those registers with respect to legacy
memory access and exception handling is disentangled from the register file’s control logic.

This does, however, raise the question of whether and how non-capability-aware instruc-
tions should interact with capability values in registers – a concern not dissimilar to the behavior
of instructions on 64-bit architectures offering legacy 32-bit support. We recommend that indi-
vidual instructions reading from, or writing to, a register in the register file have fixed integer
or capability interpretations based on the opcode encoding – i.e., that new instructions be intro-
duced that explicitly specify whether capability semantics are required for an input or output
register. The bottom XLEN bits of the register will contain the integer interpretation (which,
for a capability, will be its virtual address), and the top XLEN bits (and additional tag bit) will
contain capability metadata. When a register is read as an integer (i.e., using an opcode with an
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integer interpretation), the register’s bottom 64 bits will be utilized. When a register is written
as an integer, its bottom 64 bits will hold the new integer value, and the top 64 bits and tag bit
will be zero filled. This both prevents in-register corruption of tagged capabilities by implicitly
clearing the tag, and also provides reasonable semantics for integer access to capability values.

One challenge in introducing CHERI support is that the architectural constant, XLEN, the
number of bits in a register, is used to define numerous behaviors throughout the ISA, such as
the size of CSRs, the operation of integer operations, the size of virtual addresses, and so on.
We choose to leave XLEN as 64 as the majority of these operations are intended to be of the
natural integer size (e.g., for addition). However, this does mean that in some cases we need
to introduce new instructions intended to operate on full 128-bit-wide values. For example, we
introduce new capability-width CSR accessor instructions that request operations at capability
width (CLEN) rather than XLEN width, and new load and store instructions that work with
128-bit values (plus corresponding tag bits).

6.2.4 Capability-Aware Instructions
In CHERI-MIPS, two general categories of instructions are added: those that query or manip-
ulate capability fields within registers, and those that utilize registers for the purposes of load,
store, or jump operations.

Register-to-register instructions querying and manipulating fields can remain roughly as
defined in CHERI-MIPS, allowing integer values to be moved in and out of portions of an in-
register capability, subject to guarded manipulation. As such, they are simply new instructions
defined in CHERI-RISC-V and added to the opcode space. Because of the merged register file,
integer and capability values are now read from, and written back to, the same register file. As
there are no longer reserved capability registers, those permission checks are no longer required
when reading from or writing to registers.

In CHERI-RISC-V, assuming that capabilities are stored in the general-purpose register file,
it is possible to imagine having memory-access and control-flow instructions condition their
behavior based on the presence of a tag, selecting a compatible integer behavior if the tag is not
set, and a capability behavior if it is set. However, this would violate the principle of intentional
use: not only should privilege be minimized, but it should not be unintentionally, implicitly, or
ambiguously exercised. Allowing a corrupted capability (i.e., one with its tag stripped due to
an overlapping data write) to dereference DDC implicitly would violate this design goal. As a
result, as with CHERI-MIPS, in CHERI-RISC-V we choose to introduce a new set of explicitly
capability-relative load, store, and jump operations that require the tag bit to be set in order for
a register to be dereferenced; otherwise, an exception is thrown. Existing RISC-V instructions
in this category are retained, operating relative to DDC or PCC. One possible encoding model
would be to prefix existing instructions of this type with a new prefix indicating (and requiring)
capability interpretation.

6.2.5 Capability Control Registers and Exception Handling
Unlike in CHERI-MIPS, we recommend using CSRs to hold special capabilities, rather than
making them number registers in the register file. RISC-V defines several modes including ma-
chine mode, user mode, and supervisor mode. In addition, a future hypervisor mode is briefly
described but not fully defined. As such, a richer set of capability CSRs is implemented than
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on CHERI-MIPS. In keeping with the CSR approach used in RISC-V, we define the following
new CSRs that can be read and written only from machine mode:

• MEPCC - Machine Mode Exception Counter Capability (extends mepc)

• MDC - Machine Mode Data Capability

• MVC - Machine Mode Vector Capability (extends mtvec)

• MSC - Machine Mode Scratch Capability

We define the following new CSRs that can be read and written only from hypervisor mode and
above:

• HEPCC - Hypervisor Mode Exception Counter Capability (extends hepc)

• HDC - Hypervisor Mode Data Capability

• HVC - Hypervisor Mode Vector Capability (extends htvec)

• HSC - Hypervisor Mode Scratch Capability

We define the following new CSRs that can be read and written only from supervisor mode and
above:

• SEPCC - Supervisor Mode Exception Counter Capability (extends sepc)

• SDC - Supervisor Mode Data Capability

• SVC - Supervisor Mode Vector Capability (extends stvec)

• SSC - Supervisor Mode Scratch Capability

We employ the “N” extension (for “User-Level Interrupts”) being developed in the newer
versions of the RISC-V specifications, and extend it with the following new CSRs that can be
read and written from any mode:

• DDC - Default Data Capability

• UEPCC - User Mode Exception Counter Capability (extends uepc)

• UDC - User Mode Data Capability

• UVC - User Mode Vector Capability (extends uvec)

• USC - User Mode Scratch Capability
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The extension could be leveraged for user-space-only implementations of CCall, as well
as routing specific interrupts from suitable devices to user-level compartments for handling by
sandboxed device drivers.

Explicit data and vector capabilities replace our definitions of KCC and KDC in CHERI-
MIPS, giving each ring its own code and data capabilities to utilize during exception handling.
We define “scratch capabilities” to allow the exception handler to stash a capability register for
the purposes of having a working register that corresponding data capabilities can be loaded
to in order to begin a full context save. This is consistent with RISC-V’s use of scratch reg-
isters in various modes to avoid committing general-purpose registers to exception handling,
as happens in the MIPS ABI with $k0 and $k1. We are therefore able to similarly avoid the
need for CHERI-MIPS’s KR1C and KR2C. We further anticipate that corresponding machine-
mode, hypervisor-mode, supervisor-mode, and user-mode cause CSRs will be extended with
capability-related causes along the lines of those found in Table 4.7.1.

6.2.6 Page Tables

As with CHERI-MIPS, it is desirable to extend the page-table permission bits with two new
permissions that limit the ability to load and store tagged capabilities in regions of virtual
memory. Unfortunately, there are no remaining spare bits in the RISC-V Sv32 (32-bit) page-
table entry (PTE) format for additional hardware permissions. For the purposes of prototyping,
it may be desirable to utilize the two available software-defined PTE permission bits – but
these are likely to be used in current operating systems, requiring a longer-term solution. The
Sv48 (48-bit) PTE format includes several reserved bits, which could be allocated for use by
CHERI-RISC-V. We define the following new permissions:

• A new load permission, if not present, strips tags from loaded capabilities.

• A new store permission, if not present, causes attempts to store a capability with the tags
set to throw an exception.

6.2.7 Other Semantics

In CHERI-MIPS, in keeping with the MIPS ISA design, many instructions are able to throw
exceptions – not only the load/store/jump variants, but also operations to manipulate capability
fields. In more complex microarchitectures, it may be desirable to limit the set of instruc-
tions that can throw exceptions. If that is desirable for CHERI-RISC-V, then this could be ac-
complished by shifting manipulation instructions from throwing exceptions on non-permitted
access to clearing the tag bit in the target register. This maintains the security invariant that
monotonicity (and other aspects) are enforced, but shifts the point of exception delivery from
manipulation to dereference.

One risk in adopting this approach is that debugging non-derefenceable pointers may be-
come more difficult due to greater asynchrony. An additional architectural status bit that can be
checked to detect loss of a tag by an instruction would allow compiler-inserted instrumentation
to check for tag loss at suitable moments (e.g., after potentially tag-stripping operations such
as pointer manipulation).
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6.3 CHERI-x86-64
This section explores models for applying CHERI protection to the x86 architecture. The x86
architecture is a widely deployed CPU architecture used in a variety of applications ranging
from mobile to high-performance computing. The architecture has evolved over time from 16-
bit processors without MMUs to present-day systems with 64-bit processors supporting virtual
memory via a combination of segmentation and paging.

6.3.1 x86 Variants
The x86 architecture has spanned three register sizes (16, 32, and 64 bits) and multiple memory
management models. We choose to define CHERI solely for the 64-bit x86 architecture for
a variety of reasons including its more mature virtual-memory model, as well as its larger
general-purpose register file.

6.3.2 Capability Registers versus Segments
The x86 architecture first added virtual memory support via relocatable and variable-sized seg-
ments. Each segment was assigned a mask of permissions. Memory references were resolved
with respect to a specific segment including relocation to a base address, bounds checking, and
access checks. Special segment types permitted transitions to and from different protection
domains.

These features are similar to features in CHERI capabilities. However, there are also some
key differences.

First, x86 addresses are stored as a combination of an offset and a segment spanning two
different registers. General-purpose registers are used to hold offsets, and dedicated segment
selector registers are used to hold information about a single segment. The x86 architecture
provides six segment selector registers – three of which are reserved for code, stack, and gen-
eral data accesses. A fourth register is typically used to define the location of thread-local
storage (TLS). This leaves two segment registers to use for fine-grained segments such as sep-
arate segments for individual stack variables. These registers do not load a segment descriptor
from arbitrary locations in memory. Instead, each register selects a segment descriptor from a
descriptor table with a limited number of entries. One could treat the segment descriptor tables
(or portions of these tables) as a cache of active segments.

Second, more fine-grained segments are not derived from existing segments. Instead, each
entry in a descriptor table is independent. Write access to a descriptor table permits construction
of arbitrary segments (including special segments that permit privilege transitions). Restricting
descriptor-table write access to kernel mode does not protect against construction of arbitrary
segments in kernel mode due to bugs or vulnerabilities. As a result, segment descriptors are not
able to provide the same provenance guarantees as tagged capabilities.

Third, existing segment descriptors do not have available bits for storing types or permis-
sions more expressive than the existing read, write, and execute.

Finally, x86 segmentation is typically not used in modern operating systems. On the 32-
bit x86 architecture, systems generally create segments with infinite bounds and use a non-zero
base addresses only for a single segment that provides TLS. The 64-bit x86 architecture codifies
this by removing segment bounds entirely and supporting non-zero-base addresses only for two
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segment registers. Software for x86 systems stores only the offset portion of virtual addresses
in pointer variables. Segment registers are set to fixed values at program startup, never change,
and are largely ignored.

One approach for providing a similar set of features to CHERI capabilities on x86 would be
to extend the existing segment primitives to accommodate some of these differences. For ex-
ample, descriptor-table entries could be tagged, whereby loading an untagged segment would
trigger an exception. However, some other potential changes are broader in scope (e.g., whether
segment selectors should contain an index into a table, versus a logical address of a segment de-
scriptor). Extending segments would also result in a very different model compared to CHERI
capabilities on other architectures, limiting the ability to share code and algorithms. Instead,
we propose to add CHERI capabilities to 64-bit x86 by extending existing general-purpose
registers.

6.3.3 Tagged Capabilities and Memory
As with CHERI-MIPS and CHERI-RISC-V, we recommend that both memory and registers
contain tagged capabilities. Similar to CHERI-RISC-V, we also recommend a single, 128-bit
format for CHERI-x86-64 capabilities.

6.3.4 Extending Existing Registers
The x86 architecture has expanded its general-purpose registers multiple times. Thus, the 16-
bit AX register has been extended to 32-bit EAX and 64-bit RAX. We propose extending each
general-purpose register to a tagged, 128-bit register able to contain a single capability. The
capability-sized registers would be named with a ‘C’ prefix in place of the ‘R’ prefix used
for 64-bit registers (CAX, CBX, etc.). As with CHERI-RISC-V, we recommend that reads
of the general-purpose registers as integers return the cursor value (virtual address). Writes
to general-purpose registers using non-capability-aware instructions should clear the tag and
upper 128 bits of capability metadata, storing the desired integer value in the register’s cursor.

Some x86 instructions have implicit memory operands addressed by a register. When using
capabilities to address memory, the instructions would use the full capability register.

The “string” instructions use RSI as source address and RDI as a destination address. For
example, the STOS instruction stores the value in AL/AX/EAX/RAX to the address in RDI, and
then either increments or decrements the destination index register (depending on the Direction
Flag). When using capabilities, these string instructions should use CSI instead of RSI and
CDI instead of RDI.

Instructions that work with the stack such as PUSH or CALL use the stack pointer (RSP) as
an implicit operand. With capabilities these instructions would use CSP instead of RSP.

The RIP register (which contains the address of the current instruction) would also be
extended into a CIP capability. This would function as the equivalent of PCC for CHERI-
MIPS.

6.3.5 Additional Capability Registers
Additional capability registers beyond those present in the general-purpose register set will also
be required.
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A new register will be required to hold DDC for controlling non-capability-aware memory
accesses.

The x86 architecture currently uses the FS and GS segment selector registers to provide
thread-local storage (TLS). In the 64-bit x86 architecture, these selectors are mostly reduced to
holding an alternate base address which is added as an offset to the virtual address of existing
instructions. For CHERI-x86-64 we recommend replacing these segment registers with two
new capability registers: CFS and CGS.

Finally, we propose adding two new capability registers for use in user to kernel transitions,
the Kernel Code Capability (KCC) and Kernel Stack Capability (KSC), as detailed below.

6.3.6 Using Capabilities with Memory Address Operands

As with CHERI-MIPS, CHERI-x86-64 should support running existing x86-64 code, capability-
aware code, and hybrid code. This requires the architecture to support multiple addressing
modes. The x86 architecture has implemented this in the past when it was extended to sup-
port 32-bit operation. We propose to reuse some of the same infrastructure to support a new
capability-based addressing mode.

When x86 was extended from 16 bits to 32 bits, the architecture included the ability to
run existing 16-bit code without modification as well as execute individual 16-bit or 32-bit
instructions within a 32-bit or 16-bit codebase. The support for 16-bit versus 32-bit operation
was split into two categories: operand size and addressing modes. The code segment descriptor
contains a single-bit ‘D’ flag which set the default operand size and addressing mode. These
attributes can then be toggled to the non-default setting via opcode prefixes. The 0x66 prefix is
used to toggle the operand size and the 0x67 prefix is used to toggle the addressing mode.

In 64-bit (“long”) mode, the ‘D’ flag is currently always set to 0 to indicate 32-bit operands
and 64-bit addressing. A value of 1 for ‘D’ is reserved. In addition, while the 0x66 opcode
prefix is used for instructions with a 64-bit operand, the 0x67 opcode prefix is unused.

We propose a new capability-aware addressing mode that can be toggled via the ‘D’ flag of
the current code segment and the 0x67 opcode prefix. If the ‘D’ flag of a 64-bit code segment
is set to 1, then the CPU would execute in “capability mode” – which would include using
the capability-aware addressing mode by default. Individual instructions could toggle between
capablity-aware and “plain” 64-bit addressing via the 0x67 opcode prefix. Addresses using the
“plain” 64-bit addressing would always be treated as offsets relative to DDC.

Note that one can change the value of CS in user mode (for example, a user process in
FreeBSD/amd64 can switch between 32 and 64-bit by using a far call that loads a different
value of CS). This would mean that user code could swap into pure-capability mode without
requiring a system call. However, this would not alter the contents of capability registers or
their enforcement, merely the decoding of instructions. If DDC is invalid, then sandboxed
code that switched to a non-capability CS would still require valid capability registers to access
memory.

Capability-Aware Addressing

For instructions with register-based memory operands, capability-aware addressing would use
the capability version of the register rather than the virtual address relative to DDC.

For example:
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mov 0x8(%cbp),%rax

would read the 64-bit value at offset 8 from the capability described by the CBP register.
On the other hand,

mov 0x8(%rbp),%rax

would read the 64-bit value at an offset of RBP+8 from the DDC capablity. Both instruc-
tions would use the same opcode aside from the addition of an 0x67 opcode prefix. In a code
segment with ‘D’ set to 1, the second instruction would require the prefix. In a code segment
with ‘D’ set to 0, the first instruction would require the prefix.

Scaled-Index Base Addressing

x86 also supports an addressing mode that combines the values of two registers to construct a
virtual address known as scaled-index base addressing. These addresses use one register, the
base, and a second register, the index, multiplied by a scaling factor of 1, 2, 4, or 8. For these
addresses, capability-aware addresses would select a capability for the base register, but the
index register would use the integer value of the register. For example:

mov (%rax,%rbx,4),%rcx

This computes an effective address of RAX + RBX * 4 and loads the value at that address
into RCX, The capability-aware version would be:

mov (%cax,%rbx,4),%rcx

That is, starting with the CAX capability, RBX * 4 would be added to the offset, and the
resulting address validated against the CAX capability.

RIP-Relative Addressing

The 64-bit x86 architecture added a new addressing mode to support more efficient Position-
Independent Code (PIC) performance. This addressing mode uses an immediate offset relative
to the current value of the instruction pointer. These addresses are known as RIP-relative
addresses. To support existing code, RIP-relative addresses should be resolved relative to DDC
when executing instructions from a code segment whose segment descriptor has ‘D’ set to 0.
In “capability mode” where ‘D’ is set to 1, these immediate offset and memory access should
instead be validated relative to CIP (the equivalent of PCC from CHERI-MIPS).

An alternative approach might be to always require RIP-relative addresses relative to CIP
and require the runtime environment to configure a suitable CIP capability when executing
non-capability-aware code.
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Using Additional Capability Registers

The proposed capability-aware addressing mode proposed above allows for the capability ver-
sions of existing general-purpose registers such as CAX or CBP to be encoded in existing
register instructions. However, it does not permit the direct use of the additional capability
registers DDC, CFS, or CGS. DDC is not expected to be used as an explicit base address, but
CFS and CGS must be usable in this manner to support TLS with capability-aware addresses.

One option would be to repurpose the existing FS and GS segment prefixes when used
with instructions using capability-aware addresses to select an implicit base register of CFS
or CGS, respectively. However, this approach is potentially confusing. Would an instruction
using an existing address of “(%cax)” and an instruction prefix of “GS:” simply use the cursor
of CAX (value of RAX) as an offset relative to CGS? In addition, instructions that manipulate
capabilities need a way to specify an additional capability register as an operand.

To handle both of these cases, we propose to reuse the existing FS and GS segment prefixes
to extend the capability register selector field in opcodes. This is similar to the use of bits
in REX prefixes to extend the general-purpose register selector fields in other instructions.
Instructions with memory addresses will use at most one capability-register and the FS prefix
could be used to select capability registers with an index of 32 or higher. For instructions
operating on two capability registers the FS prefix would affect the register selected for the first
capability register operand, and the GS prefix would affect the register selected for the second
capability register operand. Additional capability registers such as DDC, CFS, and CGS would
be assigned register indices starting at 32 and require a suitable prefix.

The KCC and KSC registers can also be provided via this mechanism, though these registers
should be accessible only in kernel mode.

6.3.7 Capability-Aware Instructions
Control-Flow Instructions

Existing control-flow operations such as JMP, CALL, and RET would modify the offset of the
CIP capability as well as verify that the new offset is valid.

New instructions would be required when performing a control-flow operation that loads
a full CIP capability. For example, a new CJMP instruction would accept either a capability
register or an in-memory capability as its sole argument and load the new capability into CIP
similar to the CHERI-MIPS CJR instruction. New CCALL and CRET instructions (not to be con-
fused with the CHERI-MIPS protection-domain cross instructions) would be used for function
calls.

Manipulating Capabilities

New instructions will need to be defined to support capability manipulations similar to CHERI-
MIPS.

MOV variants could handle loading and storing of capabilities similar to CLC and CSC.
One option may be to reuse some existing math operations to adjust the offset of a capability

such as using INC or ADD to implement functionality similar to CIncOffset.
Another possibility is reusing the LEA instruction to construct capabilities with a modified

offset relative to a source capability.
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Variants of PUSH/POP could be used to save and restore capability registers on the stack.

6.3.8 Capability Violation Faults
For reporting capability violations, we propose reserving a new exception vector. This new
exception would report an error code pushed as part of the exception frame similar to GP# and
PF# faults. In addition, it may be useful to provide a copy of the relevant capability register via
one of the currently-unused but reserved control registers such as CR5 or perhaps CR12.

6.3.9 Capability Control Registers and Exception Handling
For interrupt and exception handling, we propose a new overall CPU mode that enables the use
of capabilities. The availability of this mode would be indicated by a new CPUID flag. The
mode would be enabled by setting a new bit in CR4. When this mode is enabled, exceptions
would push a new type of interrupt frame that would replace RIP with the full CIP capability,
and RSP with the full CSP capability. IRET would be modified to unwind this expanded stack
frame.

Interrupt and exception handlers require new capabilities for the program counter (CIP)
and stack pointer (CSP) registers. As noted above, we recommend adding two new control
registers, KCC and KSC. Transitions into supervisor mode would load new offsets relative to
KCC and KSC from existing data structures and tables to construct the new CIP and CSP reg-
ister values. For example, the current virtual address stored in each Interrupt Descriptor Table
(IDT) entry would be used as an offset relative to KCC to build CIP, and the address stored in
the Interrupt Stack Table (IST) entry in the current Task State Segment (TSS) would be used
as an offset relative to KSC to build CSP. Transitions via the SYSCALL instruction would fetch
these offsets from the appropriate MSRs. This approach does require broad capabilities for
KCC and KSC that can accommodate any desired entry point or stack location.

Another option would be to instead extend the virtual addresses stored in the IDT, IST,
and SYSCALL MSRs to store complete capabilities. This would provide the ability to use more
fine-grained capabilities. However, it would require alternative layouts for the tables, as well
as a way to set the capabilities for SYSCALL.

191



192



Chapter 7

Decomposition of CHERI Features

The CHERI ISA extension extends a RISC ISA to support capability pointers, that is, unforge-
able references to memory. These pointers require a new hardware-defined register format,
similar to floating point. To protect these pointers and make them unforgeable, CHERI distin-
guishes capability pointers from integers using tags in both registers and memory. Furthermore,
to make performance of capability pointers competitive with unprotected pointers, CHERI pro-
poses a full set of registers that support capability pointers. This chapter decomposes these
features of the CHERI capability model with some discussion of the cost and benefit of each.
The features discussed in this chapter are a subset of those in Section 2.3. These were selected
as features that are independently useful, but which compose to form the full CHERI capabil-
ity model. This suggests a logical sequence of adoption that could be consistent and useful in
increments, if a full implementation is considered too expensive.

7.1 CHERI Feature Decomposition
We may decompose CHERI support into several independently useful features:

• Virtual memory segmentation

– Global data segment offsets

– Multiple segment registers

• Pointer permissions

• Tags

– Sealed pointers

• Bounded pointers

Although they are carefully designed to be composable without adverse interactions, these
features are individually very useful – and in total present a complete capability computing
platform. We discuss each of these features and their respective costs in Section 7.1. We then
discuss how each applies to common vulnerability mitigation techniques in Section 7.2.
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7.1.1 Data and Code Segmentation
The standard virtual-memory model provides a flat virtual address space to each process with a
set of valid pages. Applications often have very complex inner structure that is not sufficiently
expressed in this scheme. The simple per-process page-set model limits the protection that the
hardware can provide, as all instructions in the process have equal access to the page set.

CHERI provides a segment register that constrains all user-space memory accesses to a con-
tiguous region of address space. CHERI provides one segment register for data, and another for
instruction fetch. This simple virtual memory segmentation mechanism would greatly enhance
certain security models. Data and code segmentation enables both limiting special execution
contexts and protecting special memory regions by limiting the general execution context. Both
of these techniques could find wide application in security software mechanisms.

Data and Code Segmentation Cost The hardware cost of data and code segmentation is very
low. If the design uses absolute pointers inside of a segment, then the base and bound registers
are simply two 64-bit values that are checked against every address translation. Thought should
be devoted to software use cases, as the majority of the cost would be in software adoption.

A data and code segmentation mechanism without capability protection should allow ac-
cess to the segment register only from supervisor mode. This would increase software cost of
crossing between segments, but would be necessary for effective compartmentalization.

Global Data-Capability Offsets

If the design uses absolute pointers inside of a segment, then the base and bound registers are
simply two 64-bit values that are checked against every address translation. However the design
might use segment-relative addressing, implementing global data capability offsets, to enable
convenient relocation within the address space. In this case the base of the segment register
would be added to the address of any memory reference to compute the virtual address.

Costs Supporting this requires an extra add on the load/store path. To improve timing, a
simpler transformation might be used at the expense of segment granularity. For example, the
segment may be defined by an address and a bit mask to define power-of-two sized regions, or
even a small number of bits for the top of the virtual address if segment sizes are fixed.

Multiple Segment Registers

While it is possible to implement simple segmentation systems with only one segment register,
efficient sharing between segments is enabled by adding a very small number of segment reg-
isters. Two segment registers could describe the current compartment and a shared segment. If
more segments are needed, a small set of segment registers could be installed by the supervisor
but selected by the user, similar to IA32, which would optimize use of frequently used shadow
spaces and protected structures that should not be writable from common data accesses.

Costs Adding more segment registers adds to the hardware complexity of memory addressing
and to the cost of context switches. In the limit, segment registers would simply be a register
file with full forwarding, as implemented in the CHERI prototype, to enable segment use as
fat-pointers.
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7.1.2 Pointer Permissions
CHERI includes permission bits on every capability pointer. These include read, write, and
execute, with other permissions such as “unsealed” – which forbids dereference to enforce
safe handling of opaque pointers. The upper bits of a 64-bit pointer may be used to hold
these memory access permissions, which can help enforce programmer intent – for example,
distinguishing between executable pointers and data pointers.

This feature would be of limited strength by itself as the permission bits could be easily
forged. However, in combination with tags, permissions might be protected by hardware.

Costs Interpreting the top bits of pointers as permissions has a very low cost in hardware.
There would be a software cost to ensure that the upper bits of a pointer are not employed for
other uses when the feature is enabled.

7.1.3 Tags
Tags are required by CHERI to make capability pointers unforgeable, but tags are also useful
as a standalone feature. Tagged memory has been studied extensively on its own (e.g., [22,
31]). A tagging system allows a program to attach a small amount of metadata to any word
in memory that can be preserved across copies through registers. While CHERI enforces a
hardware interpretation of these tags to guarantee pointer behavior in the face of untrustworthy
programs, tags can also be very powerful when controlled purely by software.

Costs Tags require some additions to the memory subsystem to keep tags alongside the data
for each line. At the bottom of the tagged cache hierarchy should be some controller that makes
sure that tags are found for each memory request and are stored when a line is evicted. The
simplest design of such a system would require error-correcting codes memory and use the
ECC bits (typically 4 per 64-bit word) to store a tag. An alternative would be a table in a region
of DRAM that is not system accessible.

7.1.4 Sealing
Pointer sealing allows a pointer to become immutable and un-dereferenceable until it has been
unsealed. Sealed pointers have a type associated with them, which identifies the type that must
be used to unseal them.

Costs Supporting sealing costs some bits in the pointer for identifying the type (currently 20
are proposed for the 128-bit prototype) and two permissions for identifying sealed pointers and
those with the permission to seal. Pointer sealing requires tags, though cryptography might be
used with a loss in encoding efficiency.

7.1.5 Bounds Checking
CHERI capability pointers include base and bound fields in addition to the basic pointer. This
structure has been called a fat pointer in compiler literature. A fat-pointer structure can be sup-
ported natively in hardware much like the floating point formats are today, performing bounds
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checks automatically when it is dereferenced to enforce spatial memory safety. Unlike software
schemes, a hardware implementation can use an efficient compressed format, saving mem-
ory and data movement instructions, which are the greatest performance cost of fat-pointer
schemes.

Costs Fat-pointer support is likely to be significant if a design is to achieve performance
parity with standard pointers. A fat pointer should be larger than an existing pointer if it
supports the same virtual address space as the original pointer as well as holding base and
bounds, so fat-pointer support is likely to introduce larger registers or a new register file. While
doubling the width of the general-purpose register file or adding a new register file is a notable
cost, bounds-checking memory accesses should not add to the critical path as the bounds check
can happen in parallel with memory translation.

7.2 Vulnerability Mitigation Strategies
The components of CHERI protection noted in Section 7.1 have applications with respect to at
least three vulnerability mitigation strategies.

• Compartmentalization

• Control-Flow Integrity

• Memory Safety

7.2.1 Compartmentalization
Compartmentalization is a vulnerability mitigation strategy that isolates program modules from
one another such that any untoward behavior in one module cannot affect any other module.
Software fault isolation (SFI) attempts to achieve compartmentalization within an address space
without dedicated hardware. Implementations of SFI include Google Native Client for Internet
distribution of native executables [125] and Microsoft’s BGI for kernel module protection [95].
These involve static verification of machine code and stringent machine-code style require-
ments.

Hardware data and code segmentation would make software fault isolation (SFI) systems
trivial, allowing the current execution to be constrained to an island in the address space. Many
SFI implementations first used the simple segmentation mechanism in IA32 but were forced to
use more creative solutions for AMD64.

There are two sources of inefficiency in current SFI techniques. The machine-code veri-
fiers reduce the total set of CPU features that isolated code may use (for example, preventing
modification to one or more registers), or require explicit bounds checks before every memory
access, either of which could reduce performance. This would not apply with non-bypassable
hardware enforcement. The second overhead concerns communication with the outside world.
It is not possible to delegate access to arbitrary buffers to isolated code, because the analysis
techniques enforce a relatively simple check: that all memory accesses are in a single con-
tiguous range in the address space. If two compartments must communicate, all data must be
copied from one space to the other.
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Providing multiple segment registers would permit sharing at a finer granularity, statically
delegating specific regions to a compartment. This would still require some copying, but for
some uses would allow data to be generated or consumed in shared regions.

Sharing using multiple segment registers is similar to multiple processes with shared mem-
ory regions, and does not provide a programmer model that is particularly convenient. Adding
bounded pointers protected by tags allows delegating objects at a granularity that is more natu-
ral for programmers. This is a significant benefit when adding compartmentalization to existing
software – which would pass data between functions or modules by pointer passing.

Capability sealing extends this flexibility, allowing pointers to be delegated between dif-
ferent compartments, yet not directly accessed. This is analogous in high-level programming
languages to providing objects with no public fields, or in low-level environments to kernel-
controlled resources accessed by file descriptors. Sealing also allows cross-domain procedure
calls to be implemented between compartments, with a sealed pair of a code and data capability
providing an entry point.

Similarly, pointer permissions reduce the need for defensive copying. For example, if an
input buffer that will be reused is delegated to an untrusted component then passing a read-
only capability ensures that the contents of the buffer will not be modified. This ensures that
the caller can continue to trust the contents (at least, to the same level that it was trustworthy
before the call). To gain the same assurance without pointer permissions, the caller would need
to copy the contents into a temporary buffer, turning a constant time operation into a linear time
operation.

Treating pointers inside compartments as global data capability offsets provides several ef-
ficiency gains. First, it allows compartments to be relocated: if bounded pointers are protected
by tags, they can be accurately identified as pointers and updated, as any interior pointers are
simply relative integers. Second, it allows better sharing between compartments. When run-
ning multiple instances of the same library, the code and constant data (and initial copies of
globals) can all be shared, even if they contain pointers.

7.2.2 Memory and Type Safety

Memory safety enforces object boundaries as intended by the programmer. Memory safety
might be violated spatially (by accessing beyond the bounds of an object) or temporally (by
accessing an object when it no longer exists in the program).

Enforcing memory safety both protects integrity and confidentiality of data in the program,
that is, it prevents tampering with data or leaking data that was not intended to be observed.

Memory safety is a weaker property than type safety. Memory safety guarantees that an
access is to a valid object. Type safety guarantees that objects may be accessed only in a way
that respects the properties associated with the objects of that type. While memory safety is a
prerequisite for type safety, type safety goes further to enforce programmer intent than memory
safety alone.

Data and code segmentation can be seen as providing very coarse-grained memory safety
– as it works on program compartments rather than individual objects.

Tags in CHERI prevent type confusion between pointers and data, a simple but crucial
aspect of type safety. This is a stronger property than memory safety for these types, ensuring
that the object is not only valid but that it is being used appropriately as a pointer or merely as
data. Of course, tags alone would prevent pointers from being forged, but could not bounds-
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check valid pointers. As a result, tagged pointers to be transformed to point anywhere else in
the address space.

When tags are used to protect bounded pointers, a system can enforce strong spatial mem-
ory safety. Every access to memory must be via a valid pointer, which will check that it is
in bounds. A number of research projects have explored the use of bounded pointers in soft-
ware to enforce spatial memory safety, even in C – which does not expect bounds enforcement
(e.g., [41, 68]). It might be noted that systems such as Mondrian Memory Protection permit
arbitrary pointer arithmetic and check only that the resulting address is a valid object, not nec-
essarily the correct valid object. Bounded pointers are able to distinguish between individual
objects, not allowing a pointer to one object to be transformed into a pointer into foreign object.

Temporal memory safety is not natively accelerated by bounded pointers, but requires
garbage collection or other conventional techniques. Tags make it possible to accurately dif-
ferentiate between pointer and non-pointer data in the system and therefore make it possible to
implement accurate garbage collection in software, even for languages such as C for which this
is traditionally impossible.

Other aspects of type safety can be enforced in hardware with pointer permissions – for
example, ensuring that immutable objects can not be accidentally modified. More importantly,
pointer permissions make it possible to prevent confusion between code and data pointers. JIT
environments must be able to both modify and execute the same memory pages. A common
approach to avoid leaking pointers that are writable and executable is to map the same physical
page in two locations, one writable and the other executable. With bounded pointers embedding
permissions, it becomes possible to have a single memory mapping (reducing TLB pressure),
yet still ensure that code with access to the executable pointer may not modify the memory.

Sealing is useful primarily for passing references between untrusted components, but can
also be used to enforce type safety by protecting against opaque pointer modification. For
example, pointers to C++ objects could be sealed on creation and unsealed when invoking
methods on them or accessing public fields (possibly accompanied by a software type check).
This would ensure that nothing that was not created as a C++ object could be accidentally
interpreted as a C++ object and, similarly, that C++ objects were not accidentally modified by
code unaware of their structure.

7.2.3 Control-Flow Robustness

Control-Flow Integrity (CFI) [1] attempts to constrain the execution of a program to its intended
control-flow graph to avoid control-flow hijacking – such as ROP and JOP attacks. Several
CHERI components can support greater control-flow robustness:

Data and code segmentation simplifies classic control-flow integrity. The classic CFI mech-
anism proposed to use IA32 segmentation to protect a shadow stack such that return addresses
were not stored in the same stack with temporary data and needed to be accessed explicitly only
by the call and return routines. Data and code segmentation would provide such a mechanism
by allowing the executable to swap in a new segment for only the few instructions that need
shadow stack access, preventing access to this memory from any other code in the applica-
tion. Data and code segmentation would also enable convenient protected shadow spaces for
other metadata that might be used by CFI schemes, simplifying schemes like cryptographically
enforced control-flow integrity (CCFI) [58].

Pointer permissions allow some forms of pointers to be differentiated. With read/write/ex-
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ecute permissions, it is possible to differentiate code and data pointers: any pointer that does
not have the execute permission is a data pointer.

Control-flow robustness can also be enforced by tags [48, 58]. Tags might be used to protect
control-flow pointers, to ensure that they are not overwritten by data. This would allow control-
flow integrity that (for example) uses a shared stack – as all writes involving pointers other than
those for control flow would clear the tag bits.

For stronger control-flow robustness, tags should at least be able to differentiate among the
following data and pointers:

• Non-pointer data

• Data pointers

• Function pointers

• Return addresses

This requires at least two tag bits per 64-bit word, giving a 3.125% overhead. More com-
plex control-flow robustness schemes require being able to differentiate between normal data
pointers and pointers to C++ vtables or equivalent.

Sealing of pointers protected by tags could use the type field to encode a large number of
pointer types. This would essentially use a single tag bit to protect a type field in spare bits of
the pointer. For example, the compiler could seal the return pointer with a specific type before
spilling it to the stack, preventing its use by anything that did not unseal it with the correct type.
The same operation could be performed with C++ vtables, or any other type of pointer that
must be explicitly differentiated.

Ultimately, control-flow robustness can not be decoupled from memory safety. Control-
flow exploits traditionally depended on memory corruption; in contrast, CFI attempts to enforce
the control-flow graph in the face of arbitrary memory safety violations. However, recent work
at MIT has shown that CFI cannot be enforced fully in the absence of memory safety[24],
although partial implementations can certainly increase the difficulty for attackers. We note
that bounded pointers (with their automatic bounds checking) compose synergistically with
CFI to reduce the attack surface of a program, and that the benefits in this section can be fully
realized only in conjunction with those in Section 7.2.2.
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Chapter 8

Detailed Design Rationale

During the design of CHERI, we considered many different capability architectures and design
approaches. This chapter describes the various design choices; it briefly outlines some possible
alternatives, and provides rationales for the selected choices.

8.1 High-Level Design Approach: Capabilities as Pointers

Our goals of providing fine-grained memory protection and compartmentalization led to an
early design choice to approach capabilities as a form of pointer. This rapidly led to a number
of conclusions:

• Capabilities exist within virtual address spaces, imposing an ordering in which capability
protections are evaluated before virtual-memory protections; this in turn had implications
for the hardware composition of the capability coprocessor and conventional MMU in-
teract.

• Capabilities are treated by the compiler in much the same way as pointers, meaning
that they will be loaded, manipulated, dereferenced, and stored via registers and to/from
general-purpose memory by explicit instructions. These instructions were modeled on
similar conventional RISC instructions.

• Incremental deployment within programs meant that not all pointers would immediately
be converted to capabilities, implying that both forms might coexist in the same virtual
memory; also, there was a strong desire to embed capabilities within data structures,
rather than store them in separate segments, which in turn required fine-granularity tag-
ging.

• Incremental deployment and compatibility with the UNIX model implied the need to
retain the general-purpose memory management unit (MMU) more or less as currently
designed, including support for variable page sizes, TLB layout, and so on. The MIPS
ISA describes a software-managed TLB rather than hardware page-table walking – as is
present in most other ISAs. However, this is not fundamental to our approach, and either
model would work.
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8.2 Capability-Register File
The decision to separate the capability-register file from the general-purpose register file is
somewhat arbitrary from a software-facing perspective: we envision capabilities gradually dis-
placing general-purpose registers as pointers, but where management of the two register files
will remain largely the same, with stack spilling behaving the same way, and so on. We selected
the separate representation for a few pragmatic reasons:

• Coprocessor interfaces frequently make the assumption of additional register files (a la
floating-point registers).

• Capability registers are quite large, and by giving the capability coprocessor its own
pipeline for manipulations, we could avoid enforcing a 256-wide path through the main
pipeline.

• It is more obvious, given a coprocessor-based interface, how to provide compatibility
support in which the capability coprocessor is “disabled,” the default configuration in
order to support unmodified MIPS compilers and operating systems.

However, it is entirely possible to imagine a variation on the CHERI design in which (more
similar to the manner in which the 32-bit x86 ISA was extended to support 64-bit registers)
the two files were conflated and able to hold both general-purpose and capability registers.
Early in our design cycle, capability registers were able to hold only true capabilities (i.e., with
tags); later, we weakened this requirement by adding an explicit tag bit to each register, in
order to improve support for capability-oblivious code such as memory-copy routines able to
copy data structures consisting of both capabilities and ordinary data. This shifts our approach
somewhat more towards a conflated approach; our view is that efficiency of implementation
and compatibility (rather than maintaining a negligible effect on the software model) would be
the primary reasons to select one approach or another for a particular starting-point ISA.

Another design variation might have specific capability registers more tightly coupled with
general-purpose registers – an approach we discussed extensively, especially when comparing
with the bounds-checking literature, which has explored techniques based on sidecar registers
or associative look-aside buffers. Many of these approaches did not adopt tags as a means of
strong integrity protection, which we require for the compartmentalization model, and which
makes associative techniques less suitable. Further, we felt that the working-set properties of
the two register files might be quite different, and effectively pinning the two to one another
would reduce the efficiency of both.

It is worth considering, however, that our recent interest in cursors (fat pointers) within
capabilities revisits both of these ideas.

8.3 Representation of Memory Segments
CHERI capabilities represent a region of memory by its base address and length; memory
accesses are relative to the base address. An alternative representation would have been for
capabilities to contain an upper and lower bound on addresses within the memory region, with
memory accesses being given in terms of absolute addresses but checked against the upper and
lower bound.
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The base and length representation was chosen because it is more convenient for arrays and
structures in the C language. Given a capability for an array and an index into the array, the
array element can be read with (for example) CLB without the need for an addition in software.
(In C, all arrays are zero based. This is not the case in other languages, e.g., Ada.) The length
of a structure is usually known at compile time, and the length of a capability can be set to the
length of a structure with CSetBounds; setting an upper bound would require an additional
addition instruction to compute it.

Although CHERI does not attempt to keep the base address of a capability secret, the use of
base-relative (rather than absolute) addresses for memory accesses reduces the need to keep the
absolute base address of a capability in a general-purpose register, and possibly might facilitate
code migration to a stricter version of the architecture in which absolute addresses are secret.

The disadvantages of the base and length representation are that:

• There is no way to grant access to the very last byte of the virtual address space (a base
of 0 and a length of 264 − 1 grants access to addresses 0 to 264 − 2).

• Base-relative addressing is cumbersome for code capabilities. If a program wants to call
a subroutine, and to grant the subroutine execute access only to its own instructions and
not to the entire program text, then the subroutine needs to be linked differently from the
calling program, because branches within the subroutine will be relative to a different
base.

A key concern with the current representation is its substantial size – simulation suggests
that cache footprint is a dominant factor in performance, although optimization techniques
such as CCured would reduce this effect. We believe that a reduction to 128-bit capability
registers would come at an observable cost to both protection scalability (e.g., limiting the
number of bits in a pointer to 40-48 bits rather than the full 64) as well as compartmentalization
functionality (e.g., having fewer software-defined permission bits). However, in practice this
may prove necessary to support widespread adoption. In that case, some care must be taken
to retain current software flexibility, especially regarding very fine-grained regions of memory,
which are highly desirable to support critical protection properties for C – e.g., granular stack
protection and arbitrary subdivision of character-based strings into separate bounded regions. It
could be that pointer compression techniques eliding specific middle bits in the address space,
or possibly trading off size and granularity (e.g., bits might be invested either in describing
very small objects at arbitrary alignment, or very large objects at more coarse alignment) would
provide a useful middle ground.

8.4 Signed and Unsigned Offsets
In the CHERI instructions that take both a register offset and an immediate offset, the register
offset is treated as unsigned integer but the immediate offset is treated as a signed integer.

Register offsets are treated as unsigned so that given a capability to the entire address space
(except for the very last byte, as explained above), a register offset can be used to access any
byte within it. Signed register offsets would have the disadvantage that negative offsets would
fail the capability bounds check, and memory at offsets within the capability greater than 263

would not be accessible.
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Immediate offsets, on the other hand, are signed, because the C compiler often refers to
items on the stack using the stack pointer as register offset plus a negative immediate offset. We
have already encountered observable difficulty due to a reduced number of bits available for im-
mediate offsets in capability-relative memory operations when dealing with larger stack-frame
sizes; it is unclear what real performance cost this might have (if any), but it does reemphasize
the importance of careful investment of how instruction bits are encoded.

8.5 Address Computation Can Wrap Around
If the target address of a load or store (base + offset + register offset + scaled immediate
offset) is greater than max addr or less than zero, it wraps around modulo 264. The load or
store succeeds if this modulo arithmetic address is within the bounds of the capability (and
other checks, such as for permissions, also succeed).

An alternative choice would have been for an overflow in the address computation to cause
the load or store to fail with a length violation exception.

The approach of allowing the address to wrap around does not allow malicious code to break
out of a sandbox, because a bounds check is still performed on the wrapped around address.

There is, however, a potential problem if a program uses an array offset that comes from a
potentially malicious source. For example, suppose that code for parsing packet headers uses
an offset within the packet to determine the position of the next header. The threat is that an
attacker can put in a very large value for the offset, which will cause wrap-around, and result in
the program accessing memory that it is permitted to access, but was not intended to be accessed
at this point in the packet processing. This attack is similar to the confused deputy attack. It
can be defended against by appropriate use of CSetBounds, or by using some explicit range
checks in application code in addition to the bounds checks that are performed by the capability
hardware.

The advantage of the approach that we have taken is that it fits more naturally with C
language semantics, and optimizations that can occur inside compilers. The following are
equivalent in C:

• a[x + y]

• *(a + x + y)

• (a + x)[y]

• (a + y)[x]

They would not be equivalent if they had different behavior on overflow, and the C compiler
would not be able to perform optimizations that relied on this kind of reordering.

8.6 Overwriting Capabilities
In CHERI, if a capability in memory is partly overwritten with non-capability data, then the
memory contents afterwards will be the capability converted to a byte representation and then
overwritten.
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Alternative designs would have been for the capability to be zeroed first before being over-
written; or for the write to raise an exception (with an explicit “clear tag in memory” operation
for the case when a program really intends to overwrite a capability with non-capability data).

The chosen approach is simpler to implement in hardware. If store instructions needed
to check the tag bit of the memory location that was being written, then they would need to
have a read-modify-write cycle to the memory, rather than just a write; in general, the MIPS
architecture carefully avoids the need for a read-modify-write cycle within a single instruction.
(However, once the memory system needs to deal with cache coherence, a write is not that
much simpler than a read-modify-write.)

The CHERI behavior also has the advantage that programs can write to a memory location
(e.g., when spilling a register onto the stack) without needing to worry about whether that
location previously contained a capability or non-capability data.

A potential disadvantage is that the contents of capabilities cannot be kept secret from
a program that uses them. A program can always discover the contents of a capability by
overwriting part of it, then reading the result as non-capability data. In CHERI, there are
intentionally other, more direct, ways for a program to discover the contents of a capability it
owns, and this does not present a security vulnerability.

However, there are ABI concerns: we have tried to design the ISA in such a way that
software does not need to be aware of the in-memory layout of capabilities. As it is necessarily
exposed, there is a risk that software might become dependent on a specific layout. One case of
particular note is in the operating-system paging code, which must save and restore capabilities
and their tags separately; this can be accomplished by using instructions such as CGetBase on
untagged values loaded from disk and then refining an in-hand capability using CSetBounds

– an important reason not to limit capability field retrieval instructions to tagged values. We
have proposed a new instruction, CSetTag, which would add a tag to an untagged value in
a capability-register operand, authorized by a second operand holding a suitably authorized
capability, to avoid software awareness of the in-memory layout.

8.7 Reading Capabilities as Bytes
In CHERI, if a data load instruction such as CLB is used on a memory location containing
a capability, the internal representation of the capability is read. An alternative architecture
would have such loads return zero, or raise an exception.

As noted above, because the contents of capabilities are not secret, allowing them to be read
as raw data is not a security vulnerability.

8.8 OTypes Are Not Secret
Another consequence of the decision not to make the contents of capabilities secret is that the
otype field is not secret. It is possible to determine the otype of a capability by reading it
with CGetType, or by reading the capability as bytes. If a program has two pairs of code and
data capabilities, (c1, d1) and (c2, d2) it can check if c1 and c2 have the same otype by using
CCheckType on (c1, d2), or by invoking CCall on (c1, d2).

As a result, a program can tell whether it has been passed an object of otype O or an
interposing object of otype I that forwards the CCall on to an object of otype O (e.g. after
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having performed some additional access control checks or auditing first).

8.9 Capability Registers are Dynamically Tagged
In CHERI, capability registers and memory locations have a tag bit that indicates whether
they hold a capability or non-capability data. (An alternative architecture would give memory
locations a tag bit, where capability registers could contain only capabilities – with an exception
raised if an attempt were made to load non-capability data into a capability register with CLC.)

Giving capability registers and memory locations a tag bit simplifies the implementation
of cmemcpy(). cmemcpy() is a variant of memcpy() that copies the tag bit as well as the
data, and so can be used to copy structures containing capabilities. As capability registers are
dynamically tagged, cmemcpy() can copy a structure by loading it into a capability register
and storing it to memory, without needing to know at compile time whether it is copying a
capability or non-capability data.

Tag bits on capability registers may also be useful for dynamically typed languages in which
a parameter to a function can be (at run time) either a capability or an integer. cmemcpy() can
be regarded as a function whose parameter (technically a void *) is dynamically typed.

8.10 Separate Permissions for Storing Capabilities and Data
CHERI has separate permission bits for storing a capability versus storing non-capability data
(and similarly, for loading a capability versus loading non-capability data).

(An alternative design would be just one Permit Load and just one Permit Store permission
that were used for both capabilities and non-capability data.)

The advantage of separate permission bits for capabilities is that that there can be two pro-
tected subsystems that communicate via a memory buffer to which they have Permit Load and
Permit Store permissions, but do not have Permit Load Capability or Permit Store Capability.
Such communicating subsystems cannot pass capabilities via the shared buffer, even if they
collude. (We realized that this was potentially a requirement when trying to formally model the
security guarantees provided by CHERI.)

8.11 Capabilities Contain a Cursor
In the C language, pointers can be both incremented and decremented. C pointers are some-
times used as a cursor that points to the current working element of an array, and is moved up
and down as the computation progresses.

CHERI capabilities include an offset field, which gives the difference between the base
of the capability and the memory address that is currently of interest. The offset can be both
incremented and decremented without changing base, so that it can be used to implement C
pointers.

In the ANSI C standard, the behavior is undefined if a pointer is incremented more than one
beyond the end of the object to which it points. However, we have found that many existing
C programs rely on being able to increment a pointer beyond the end of an array, decrement
it back within range, and then deference it. In particular, network packet processing software
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often does this. In order to support programs that do this, CHERI offsets are allowed to take on
any value. A range check is performed when the capability is dereferenced, so buffer overflows
are prevented; thus, the offset can take on intermediate out-of-range values as long as it is not
dereferenced.

An alternative architecture would have not included an offset within the capability. This
could have been supported by two different capability types in C, one that could not be decre-
mented (but was represented by just a capability) and one that supported decrementing (but
was represented by a pair of a capability and a separate integer for the offset). Programming
languages that did not have pointer arithmetic could have their pointers compiled as just a
capability.

The disadvantage of including offsets within capabilities is that it wastes 64 bits in each
capability in cases where offsets are not needed (e.g., when compiling languages that don’t
have pointer arithmetic, or when compiling C pointers that are statically known to never be
decremented).

The alternative (no offset) architecture could have used those 64 bits of the capability for
other purposes, and stored an extra offset outside the capability when it was known to be
needed. The disadvantage of the no-offset architecture is that C pointers become either un-
able to support decrementing or enlarging: because capabilities need to be aligned, a pair of
a capability and an integer will usually end up being padded to the size of two capabilities,
doubling the size of a C pointer, and this is a serious performance consideration.

Another disadvantage of the no-offset alternative is that it makes the seal/unseal mechanism
considerably more complicated and hard to explain. A program that has a capability for a
range of types has to somehow select which type within its permitted range of types it wishes
to use when sealing a particular data capability. The CHERI architecture uses the offset for
this purpose; not having an offset field leads to more complex encodings when creating sealed
capabilities.

By comparison, the CCured language includes both FSEQ and SEQ pointers. CHERI capa-
bilities are analogous to CCured’s SEQ pointers. The alternative (no offset) architecture would
have capabilities that acted like CCured’s FSEQ, and used an extra offset when implementing
SEQ semantics.

8.12 NULL Does Not Have the Tag Bit Set

In some programming languages, pointer variables must always point to a valid object. In C,
pointers can either point to an object or be NULL; by convention, NULL is the integer value
zero cast to a pointer type.

If hardware capabilities are used to implement a language that has NULL pointers, how is
the NULL pointer represented? CHERI capabilities have a tag bit; if the tag bit is set, a valid
capability follows, otherwise the remaining data can be interpreted as (for example) bytes or
integers. The representation we have chosen for NULL is that the tag bit is not set and the
base and length fields are zero; effectively, NULL is the integer zero stored as a non-capability
value in a capability register.

An alternative representation we have could have chosen for NULL would have been with
the tag bit set, and zero in the base field and length fields. Effectively, NULL would have been
a capability for an array of length zero.
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Many CHERI instructions are agnostic as to which of these two conventions for NULL is
employed, but the CFromPtr, CToPtr and CPtrCmp operations are aware of the convention.

The advantages of NULL’s tag bit being unset are:

• Initializing a region of memory by writing zero bytes to it will initialize all capability
variables within the region to the NULL capability. Initializing memory by writing zeros
is, for example, done by the C calloc() function, and by some operating systems.

• It is possible for code to conditionally branch on a capability being NULL by using the
CBTS or CBTU instruction.

8.13 Permission Bits Determine the Type of a Capability
In CHERI, a capability’s permission bits together with the s bit determine what kind of capabil-
ity it is. A capability for a region of memory has s unset and Permit Load and/or Permit Store
set; a capability for an object has s set and Permit Execute unset; a capability to call a protected
subsystem (a “call gate”) has s set and Permit Execute set; a capability that allows the owner to
create objects whose type identifier (otype) falls within a range has s set and Permit Seal set.

An alternative architecture would have included a separate capability type field, as well as
the perms field, within each capability; the meaning of the rest of the bits in the capability
would have been dependent on the value of the capability type field.

A potential disadvantage of not having a capability type field is that different kinds of
capability cannot use the remaining bits of the capability in different ways.

A consequence of the architecture we have chosen is that it is possible to create many
different kinds of capability (2 to the power of the number of permission bits plus s). Some of
the kinds of capability that it is possible to create do not have a clear use case; they just exist as
a consequence of the representation chosen for capabilities.

8.14 Object Types Are Not Addresses
In CHERI, we make a distinction between the unique identifier for an object type (the otype
field) and the address of the executable code that implements a method on the type (the base +
offset fields in a sealed executable capability).

An alternative architecture would have been to use the same fields for both, and take the
entry address of an object’s methods as a convenient unique identifier for the type itself.

The architecture we have chosen is conceptually simpler and easier to explain. It has the
disadvantage that the type field is only 24 bits, as there is insufficient space inside the capability
for more.

The alternative of treating the set of object type identifiers as being the same as the set of
memory addresses enables the saving of some bits within a capability by using the same field
for both. It also simplifies assigning type identifiers to protected subsystems: each subsystem
can use its start address as the unique identifier for the type it implements. Subsystems that need
to implement multiple types, or create new types dynamically can be given a capability with
the permission Permit Set Type set for a range of memory addresses, and they are then able
to use types within that range. (The current CHERI ISA does not include the Permit Set Type
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permission; it would only be needed for this alternative approach). This avoids the need for
some sort of privileged type manager that creates new type identifiers; such a type manager
is potentially a source of covert channels. (Suppose that the type manager and allocated type
identifiers in numerically ascending order. A subsystem that asks the type manager twice for a
new type id and gets back n and n+1 knows that no other subsystem has asked for a new type
id in between the two calls; this could in principle be used for covert communication between
two subsystems that were supposed to be kept isolated by the capability mechanism.)

8.15 Unseal is an Explicit Operation
In CHERI, converting a pointer to an opaque object into a pointer that allows the object’s
contents to be inspected or modified directly is an explicit operation. It can be done directly
with the CUnseal operation, or by using CCall to run the result of unsealing the first argument
on the result of unsealing the second argument.

An alternative architecture would have been one with “implicit” unsealing, where a sealed
capability (s set) could be dereferenced without explicitly unsealing it first, provided that the
subsystem attempting the dereference had some kind of ambient authority that permitted it to
deference sealed capabilities of that type. This ambient authority could have taken the form of
a protection ring or the otype field of PCC.

A disadvantage of an implicit unseal approach such as the one outlined above is that it is
potentially vulnerable to the “confused deputy” problem [38]: the attacker calls a protected
subsystem, passing a sealed capability in a parameter that the called subsystem expects to be
unsealed. If unsealing is implicit, the protected subsystem can be tricked by the attacker into
using its privileges to read or write to memory to which the attacker does not have access.

The disadvantage of the architecture we have chosen is that protected subsystems need to
be careful not to leak capabilities that they have unsealed, for example by leaving them on
the stack when they return to their caller. In an architecture with “implicit unseal”, protected
subsystems would just need to delete their ambient authority for the type before returning, and
would not need to explicitly clean up all the unsealed capabilities that they had created.

8.16 EPCC is a Numbered Register
The exception program counter (EPCC) is a numbered register. An alternative architecture
would have been to make EPCC like PCC, and only accessible via a special instruction. This
alternative architecture would have had several advantages:

• If EPCC is set to a bad value (e.g., tag bit unset) and then an exception occurs, it is not
obvious what the CPU should do. The behavior in this situation is explicitly undefined in
the current CHERI ISA. Raising an exception is problematic because EPCC is already
invalid at that point. If EPCC could only be set using a special instruction, then that
instruction could check that the proposed new value of EPCC was valid, and raise an
exception (using the old, valid, EPCC) if it wasn’t.

• For compatibility with legacy operating systems that are unaware of capabilities, it is de-
sirable that an exception handler that just sets CP0.EPC (and not EPCC.offset) should
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work. But that then raises the question of what happens if operating system code changes
both CP0.EPC and EPCC.offset. Ideally, these should behave as if they are the same
register. But this can be complex to implement in hardware: EPCC and EPC are in
different register files, and EPCC can be modified by many different capability instruc-
tions, because it is a numbered register; it can be complex to make all of these update
CP0.EPC as well. If EPCC was not a numbered register, then only the special instruc-
tion for changing EPCC should need to be aware that CP0.EPC needs to be changed
whenever EPCC changes.

8.17 CMove is Implemented as CIncOffset
CMove is an assembler pseudo-operation that expands to CIncOffset with an offset of zero.
The CIncOffset instruction treats a zero offset as a special case, allowing it to be used to
move sealed capabilities and values with the tag bit unset.

A separate opcode for CMove would have had the disadvantage that it would have used up
one more opcode. The advantage of distinguishing CMove (of a capability that might be sealed,
or invalid) from CIncOffset (of a capability that the programmer assumes to be unsealed, and
valid, with an offset that happens to be zero) is that CIncOffset could raise an exception if its
argument was sealed or invalid. That we don’t do this isn’t a security problem; but performing
the check would catch some programmer errors earlier.

CIncOffset, unlike CIncBase, can be used on invalid capabilities (so that it can be used
to implement increment of a uintcap t). This makes it a more natural expansion for the
CMove instruction. For security reasons, CIncOffset must raise an exception if the offset is
non-zero, so CIncOffset would need to treat increment the offset of a sealed capability by
zero as a special case.

We have concluded that our choice was likely an error: while not particularly harmful, in
retrospect a dedicated instruction for CMove would be better, and we will make this change in
a future ISA revision.

8.18 Instruction Set Randomization
CHERI does not include features for instruction set randomization[46]; the unforgeability of
capabilities in CHERI can be used as an alternative method of providing control flow integrity.

However, instruction set randomization would be easy to add, as long as there are enough
spare bits available inside a capability (the 128 bit representation of capabilities does not have
many spare bits). Code capabilities could contain a key to be used for instruction set random-
ization, and capability branches such as CJR could change the current ISR key to the value
given in the capability that is branched to.

8.19 ErrorEPC Does Not Have a Capability Equivalent
The capability register EPCC corresponds to the CP0 register EPC in the MIPS ISA; there
is no capability equivalent of the MIPS ErrorEPC register. The BERI1 implementation does
not support ERET to ErrorEPC as the circumstances under which this might be needed (e.g.,

210



return from an ECC or parity error) do not occur with BERI1. As we don’t support this part
of the MIPS ISA in BERI, there is no need to have an equivalent capability register in CHERI
(and making it a numbered register would consume scarce numbered registers).

An future extension of the CHERI ISA that both supported ERET to ErrorEPC and that had
special capability registers as unnumbered registers might add an additional special capability
register corresponding to ErrorEPC.

8.20 KCC, KDC, KR1C, and KR2C are Numbered Registers
The MIPS ISA reserves two general-purpose registers, $k0 and $k1 for use in exception han-
dlers, such that the context switch from userspace to kernel can be entirely software-defined.
We mirrored this design choice in the reservation of a number of capability registers for use
by kernel exception – KCC and KDC, but also KR1C and KR2C. For the reserved MIPS
registers, there is an opportunity for a small information leak from kernel to userspace, and can
be managed by having the software supervisor clear the registers before an exception handler
returns. For capability registers such as KCC and KDC, which are intended to retain privileged
contents during normal user-mode execution, we rely on PCC permission bits (combined with
ring-based protections) to control access.

This design avoided the need to introduce further instructions to access reserved registers.
In retrospect, however, we are not clear that this was the cleanest design choice, and have be-
gun a migration towards explicitly loading (and storing) KCC and KDC from (and to) special
registers via special instructions: CGetKCC, CSetKCC, CGetKDC, and CSetKDC. This is espe-
cially important if one were to contemplate a merged general-purpose and capability register
file, in which case avoiding further reservations in that file will limit ABI disruption. Finally:
these registers are only used very infrequently, and as such take up valuable space that could be
available to the compiler, meaning that using up encoding and register-file space is a less good
use of micro-architectural resources.

8.21 System Privilege Permission
In the current version of the CHERI, one of the capability permission bits authorizes access
to privileged processor features that would allow bypass of the capability model, if present
on PCC. This is intended to be used by hybrid operating-system kernels to manage virtual
address spaces, exception handling, interrupts, and other necessary architectural features that
do not map cleanly into memory-oriented capabilities. It can also be used by stand-alone
CHERI-based microkernels to control use of the exception-handling and cache-management
mechanisms, and of the MMU on MMU-enabled hardware. Although the permission limits
use of features to control the virtual address space (e.g., TLB manipulation), it does not prevent
access to kernel-only portions of the virtual address space. This allows kernel code to operate
without privileged permission using the capability mechanism to limit which portions of kernel
address space are available for use in constrained compartments.

We employ a single permission bit to conserve space (especially in 128-bit capabilities),
but also because it offers a coherent view on architectural privilege: many of the privileged ar-
chitectural instructions allow bypass of in-address-space memory protection in different ways,
and using subsets of those operations safely would be quite difficult. In earlier versions of the
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CHERI ISA, we employed multiple privileged bits, but did not find the differentiation useful in
practical software design. In more feature-rich privileged instruction sets (e.g., those with vir-
tualization features), a more fine-grained decomposition might be of greater utility, and could
motivate a new capability format intended to authorize use of privilege.

In earlier versions, the privileged permission(s) controlled only use of CP2 privilege (i.e.,
exception-handling capabilities); in the current version, the bit also controls MIPS privileges
available only in kernel mode: TLB, CP0, selected uses of the CACHE instruction, and ERET use.
This allows compartmentalization within the kernel address space (e.g., to sandbox untrustwor-
thy components), as well as more general mitigation by limiting use of privileged features to
only selected code components, jumped to via code pointers carrying the privileged permission.
If virtual-memory and exception-handling features were not controlled by this permission bit,
use of those ISA features would allow bypass of in-kernel compartmentalization. Regardless of
this bit, extreme care is required to safely compartmentalize within an operating-system kernel.

In our design, absence of the privileged permission denies use of privileged ISA features,
but presence does not grant that right unless it is also authorized by kernel mode. Other compo-
sitions of the capability permission bit and existing MIPS KSU (kernel/supervisor/user-mode)
authorization are imaginable. For example, the permission bit could grant privileged ISA use in
userspace regardless of KSU state. While this composition might allow potentially interesting
delegation of privilege to user components, the lack of granularity of control appears to offer
little benefit when a similar effective delegation can be implemented via the exception model
and implied ring transition. In a ring-free design (e.g., one without an MMU or kernel/super-
visor/user modes), however, the privileged permission would be the sole means of authorizing
privilege.

Another design choice is that we have not extended MIPS with new capability-based priv-
ilege instructions; instead, we chose to limit use of existing instructions (such as those used in
TLB management). This fails to extend the principle of intentional use to these privileged fea-
tures; in return we achieve reduced disruption to current software stacks, and avoid introducing
new instructions in the opcode space. Despite that slight apparent shortcoming, we observe
that fine-grained privilege can still be accomplished – due to use of a permission bit on PCC:
even within a highly privileged kernel, most functions might operate without the ability to em-
ploy privileged instructions, with an explicit use of CJALR to jump to a code pointer with the
Access System Registers permission enabled – which executes only the necessary instructions
and reduces the window of opportunity for privilege misuse.

An alternative design would extend the MIPS privileged instruction set to include versions
that accept explicit capability operands authorizing use of those instructions, in a manner sim-
ilar to our extensions to our capability-extended load and store instructions. Another variation
on this scheme would authorize setting of a privilege status register, enabling specific instruc-
tions (or classes of instructions) based on an offered capability, combining these two approaches
to authorize selected (but unmodified) privileged instructions.

Finally, it is conceivable that capabilities could be used to authorize delegation of the right
to use privileged instructions to userspace code, rather than simply restricting the right to use
privileged instructions in kernel code. We have opted to limit our approach to using capabilities
to restrict features in the MIPS model, with a simple and deterministic composition of features.
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8.22 Interrupts and CCall Selector 0 Use the Same KCC/KDC
MIPS executes all exception handlers within the same privileged ring, and we have inherited
that design choice for our CCall selector 0 exception handler, both with respect to classical
ring-based security and also the decision to use a single set of KCC/KDC special registers.
Given that domain transition without user address spaces does not actually require supervisor
privilege, it would make substantial sense to shift the software-defined CCall/CReturn mech-
anism to a userspace exception handler. These are not supported by MIPS, and substantial pro-
totyping would be required to evaluate this approach. If that were to be implemented, then it
would be necessary to differentiate the code and data capabilities for the domain-transition im-
plementation from the kernel’s own code and data capabilities – possibly via additional special
registers configured and switched by the kernel on behalf of the userspace language runtime.

8.23 CCall Selector 1: Jump-Based Domain Transition
CCall selector 1 offers a non-exception-based mechanism by which non-monotonic capability
register-file transformations can be performed, in contrast to the exception-based selector 0.
Non-monotonicity is accomplished by virtue of unsealing of the sealed operand capabilities
to CCall selector 1, whereas selector 0 accomplishes non-monotonicity by virtue of granting
access to exception-mode capability registers (KCC and KDC).

While a standard MIPS pipeline allows a branch delay slot before diverting control flow
after a branch, CCall selector 1 unseals a capability belonging to the new domain and places it
in IDC. As the remaining branch delay instruction in the calling domain would normally have
access to data registers written by the branch, a special restriction must be made. We could re-
move the delay slot for this case, but this would disturb the normal control flow of the pipeline,
causing a pipeline flush in our case. Removing the delay slot would also prevent an important
optimization for safe domain crossing which uses the delay slot to clear the last registers in the
calling domain which were needed as operands for the CCall itself. Rather than removing the
delay slot after CCall selector 1, we choose to throw an exception on any instruction that reads
or writes IDC in the branch-delay slot. The result is that the newly unsealed IDC is available
only to code executing at the newly unsealed PCC, avoiding premature exposure of IDC to the
caller before callee code begins executing.

It is possible to imagine more comprehensive jump-based instructions including:

• A variation that has link-register semantics, saving the caller PCC in a manner similar to
CJALR. We choose not to implement this to avoid writing two general-purpose registers
in one instruction, and because the caller can itself perform a move to a link destination
based on CGetPCC.

• A variation that seals caller PCC and IDC to construct a return-capability pair. We
choose not to implement this to multiple register writes in one instruction, and because
the caller can itself perform any necessary sealing of its own return state if required.
Further, to provide strict call-return semantics, additional more complex behavior is re-
quired, which is not well captured by a single RISC instruction.

In general, we anticipate that CCall selector 1 will be used to invoke trusted software
routines with similar behavior and tradeoffs to using a software exception handler with selector
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0. For example, we expect that microkernel message-passing system calls implemented using
selector 0 will clear non-argument capability and general-purpose integer registers, perform
global checks, and store any return information required to restore control to the caller before
return to userspace. Unlike a return from a system call, the CCall selector 1 trusted routine
can jump out of trusted code without any special handling in the ISA, as it will conform to
monotonic semantics – i.e., the clearing of registers that should not be passed to the callee,
followed by a CJR to transfer control to the callee.

8.24 Compressed Capabilities

256-bit capabilities provide for byte-granularity protection, allowing arbitrary subsets of the
address space to be described, as well as substantial space for object types, software-defined
permissions, and so on. However, they come at a significant performance overhead: the size of
64-bit pointers is quadrupled, increasing cache footprint and utilization of memory bandwidth.
Fat-pointer compression techniques exploit information redundancy between the base, pointer,
and bounds to reduce the in-memory footprint of fat pointers, reducing the precision of bounds
at substantial space savings.

8.24.1 Semantic Goals for Compressed Capabilities

Our target for compressed capabilities was 128 bits: the next natural power-of-two pointer size
above 64-bit pointers, and an expected one third of the overhead of the full 256-bit scheme.
A key design goal was to allow both 128-bit and 256-bit capabilities to be used with the same
instruction set, permitting us to maintain and evaluate both approaches side-by-side. To this
end, and in keeping with previously published schemes, the CHERI ISA continues to access
fields such as permissions, pointer, base, and bounds via 64-bit general-purpose registers. The
only visible semantic changes between 256-bit and 128-bit operation should be: the in-memory
footprint when a capability register is loaded or stored, the density of tags (doubled when the
size of a capability is halved), potential imprecision effects when adjusting bounds, potential
loss of tag if a pointer goes (substantially) out of bounds, a reduced number of permission bits,
a reduced object type space, and (should software inspect it) a change in the in-memory format.

The scheme described in our specification is the result of substantial iteration through de-
signs attempting to find a set of semantics that support both off-the-shelf C-language use, as
well as providing strong protection. Existing pointer compression schemes generally provided
suitable monotonicity (pointer manipulation cannot lead to an expansion of bounds) and a com-
pletely accurate underlying pointer, allowing base and bounds to experience imprecision only
during bounds adjustment. However, they did not, for example, allow pointers to go “out of
bounds” – a key C-language compatibility requirement identified in our analysis of widely
used C programs. The described model is based on a floating-point representation of distances
between the pointer and base/bounds, and places a particular focus on fully precise represen-
tation bounds for small memory allocations (< 3

4
MiB) – e.g., as occur on the stack or when

performing string or image processing.
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8.24.2 Precision Effects for Compressed Capabilities

Precision effects are primarily visible during the narrowing of bounds on an existing capabil-
ity. In order to provide the implementation with maximum flexibility in selecting a compres-
sion strategy for a particular set of bounds, we have removed the CIncBase and CSetLen

instructions in favor of a single CSetBounds instruction that exposes adjustments to both
atomically. This allows the implementation to select the best possible parameters with full
information about the required bounds, maximizing precision. Precision effects occur in the
form of increased alignment requirements for base and bounds: if requested bounds are highly
unaligned, then the resulting capability returned by CSetBounds may have broader rights than
requested, following stronger alignment rules. CSetBounds maintains full monotonicity, how-
ever: bounds on a returned capability will never be broader than the capability passed in. Fur-
ther, narrowing bounds is itself monotonic: as allocations become smaller, the potential for
precision increases due to the narrower range described. Precision effects will generally be vis-
ible in two software circumstances: memory allocation, and arbitrary subsetting, which have
different requirements.

Memory allocation subdivides larger chunks of memory into smaller ones, which are then
delegated to consumers: this is most frequently heap and stack allocation, but can also occur
when the operating system inserts new memory mappings into an address space, returning a
pointer (now a capability) to that memory. Memory allocators already impose alignment re-
quirements: at least word or pointer alignment so that allocated data structures can store at
natural alignment, but also (for larger allocations) page or superpage alignment to encourage
effective use of virtual memory. Compressed capabilities strengthen these alignment require-
ments for large allocations, which requires modest changes to heap, stack, and OS memory
allocators in order to avoid exposing undesired precision effects. Bounds on memory alloca-
tions will be set using CSetBoundsExact, which will throw an exception if precise bounds
are not possible due to precision effects.

Arbitrary subsetting occurs when programmers explicitly request that a capability to an ex-
isting allocation be narrowed in order to enforce bounds checks linked to software invariants.
For example, an MPEG decoder might subset a larger memory buffer containing many frames
into individual frames when processing them, in order to catch misbehavior without permitting
(for example) corruption of adjacent frames. Similarly, packet processing systems frequently
embed packet data within other data structures; bugs in protocol parsing or packet construction
could affect packet metadata with security consequences. 128-bit CHERI can provide precise
subsetting for smaller subsets (< 1MiB), but for larger subsets may experience precision ef-
fects. These are accepted in our programmer model, and could permit buffer overflows between
subsets that, in the 256-bit model, would be prevented. Arbitrary subsetting, unless specifically
annotated to require full precision, will utilize CSetBounds, which can return monotonically
non-increasing but potentially imprecise bounds.

Two further cases required careful consideration: object capabilities, and the default data
capability, for quite different reasons. Object capabilities require additional capability fields
(software-defined permission bits and the fairly wide object type field). The default data ca-
pability is an ordinary 128-bit capability, but has the property that use of a full cursor (base
plus offset) introduces a further arithmetic addition in a critical path of MIPS loads and stores.
In both cases, we have turned to reduced precision (i.e., increased alignment requirements) to
eliminate these problems, looking to minimum page-granularity alignment of bounds while re-
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taining fully precise pointers. By requiring strong alignment for default data capabilities, the
extra addition becomes a logical or while constructing the final virtual address, assisting with
the critical path. As object capabilities are used only by newly implemented software, and
provide coarser-grained protection, we accepted the stronger alignment requirement for sealed
capabilities and have not encountered significant problems as a result.

The final way in which imprecision may be visible to software is if the pointer (offset) in
a capability goes substantially out of bounds. In this case, the compression scheme may not
be able to represent the distances from the pointer to its original bounds accurately. In this
scenario, the tag will be cleared on the capability to prevent dereference, and then one of the
resulting pointer value or bounds must be cleared due to the unrepresentability of the resulting
value. To discourage this from happening in the more common software case of allowing
small divergence from the bounds, CSetBounds over provisions bits required to represent the
distances during compression; however, that over provision comes at a slight cost to precision:
i.e., we accept slightly stronger alignment requirements in return for the ability to allow pointers
to be somewhat out of bounds.

8.24.3 Candidate Designs for Compressed Capabilities
Compressed capabilities in the CHERI specification are, in fact, the third candidate scheme that
we considered. We document the earlier two schemes here for comparison.

We defined two initial 128-bit formats based on floating-point techniques, one that encodes
bounds with differences from the pointer, and a second based on the “low-fat pointer” de-
sign [49]. The third candidate synthesizes the advantages of both and is our recommended
approach.

CHERI-128 candidate 1

063

perms’23 e’6 toBase’16 toBound’16 s

otype’16 cursor’48

}
128
bits

Figure 8.1: CHERI-128 c1 memory representation of a capability

s The s flag corresponds directly to the architectural s bit, which indicates that a capability is
sealed.

e The 6-bit e field gives an exponent for the toBase and toBound fields. The exponent is the
number of bits that toBase and toBound should be shifted before being added to cursor when
performing bounds checking.

toBase This 16-bit field contains a signed integer that is to be shifted by e and added to cursor
(with the lower bits set to 0) to give the base of the capability. This field must be adjusted upon
any update to cursor to preserve the base of the capability.
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mask = −1 << e

base = (toBase << e) + cursor&mask

perms The 23-bit perms field contains precisely the same 15-bits of permissions as the 256-
bit version. The perms field has 8-bits of user-defined permissions at the top, down from
16-bits in the 256-bit version.

toBound This 16-bit field contains a signed integer that is to be shifted by e and added to
cursor (with the lower bits set to 0) to give the bound of the capability. The length of the
capability is reported by subtracting base from the resulting bound. This field must be adjusted
upon any update to cursor to preserve the length of the capability.

base + length = (toBound << e) + cursor&mask

otype The 16-bit otype field corresponds directly to the otype bit vector but is only defined
when the capability is sealed. If s is cleared, the otype is zero, and these bits are an extension
of cursor.

cursor The 64-bit cursor value holds a 48-bit absolute virtual address that is equal to the ar-
chitectural base + offset. The address in cursor is the full 64-bit MIPS virtual address when the
capability is unsealed, and it holds a compressed virtual address when the capability is sealed.
The compression format places the 5 bits of the address segment in bits [47:42], replacing un-
used bits of the virtual address. When the capability is unsealed, the segment bits are placed at
the top of a 64-bit address and the rest are “sign” extended.

cursor = base + offset

Compression Notes When CSetBounds is not supplied with a length that can be expressed
with byte precision, the resulting capability has an e that is non-zero and toBase and toBound
describe units of size 2e. e is selected such that the pointer can wander outside of the bounds
by at least the entire size of the capability both below the base and above the bound without
becoming unrepresentable. As a result, a 16-bit toBase and toBound require both a sign bit
and a bit for additional range that cannot contribute to the size of representable objects. The
greatest length that can be represented with byte granularity for a 16-bit toBase and toBound
is 214 = 16KiB. The resulting alignment in bytes required for an allocation can be derived
from the length by rounding to the nearest power of two and dividing by this number.

alignment bits = dlog2(X)e − 14

CHERI-128 candidate 2 (Low-fat pointer inspired)

baseBits This 16-bit field gives bits to be inserted into cursor[e+15:e], with the lower bits
set to 0, to produce the base of the capability.

base = {cursor[63 : e + 16] + correction,baseBits} � e
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perms’23 e’6 baseBits’16 topBits’16 s

otype’16 cursor’48

}
128
bits

Figure 8.2: CHERI-128 c2 memory representation of a capability

The bits above (e + 16) in cursor may differ from base by at most 1, i.e.

correction = f(baseBits, topBits, cursor[e + 15 : e]) = (1, 0, or − 1)

063

cursor[63:e + 16] + correction ’(48-e) topBits ’16 0 ’e

Figure 8.3: CHERI-128 c2 base construction

topBits This 16-bit field gives bits to be inserted into the bits of cursor at e to produce the
representable top of the capability equal to (top - 1024). To compute the top, a circuit must
insert topBits at e, set the lower bits to 0, subtract 1024, and add a potential carry bit. The carry
bit is implied if topBits is less than baseBits, as the top will never be less than the bottom of
an object.

top = {cursor[63 : e + 16] + correction, topBits, 0}

The bits above (e + 16) in cursor may differ from top by at most 1:

correction = f(baseBits, topBits, cursor[e + 15 : e]) = (1, 0, or − 1)

063

cursor[63:e + 16] + correction ’(48-e) topBits ’16 0 ’e

Figure 8.4: CHERI-128 c2 top bound construction

Candidate 2 Notes Candidate 2 is inspired by “Low-fat pointers” [49], which insert selected
bits into the pointer to produce the bounds. The Low-fat pointer representation does not allow
a pointer to go out of bounds, but we observe that cursor could wander out of bounds without
causing base and top to become ambiguous as long as these three remain within the same
2(e+16)-sized region. Candidate 2 sets the edges of this range to a fixed 1024e bytes beyond
each bound, and encodes these in the top and bottom fields to allow high-speed access during
pointer arithmetic.
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CHERI-128 candidate 3

After substantial exploration, we adopted a third compression model (see Section 4.11), which
is somewhat similar to candidate 2 with two improvements:

• Condense hardware and software permissions, making room for larger baseBits and top-
Bits fields in the unsealed capability format.

• A new sealed capability format, which reduces the size of baseBits and topBits to make
room for a larger otype and software-defined permissions.

Alternative exponents The CHERI-128 scheme presented in Chapter 4.11 treats the expo-
nent (e) as a 2e multiplier, though we note that in our current implementation the bottom two
bits of e are forced to be zero, so the exponent is actually 16e[5:2]. Clearly we could chose dif-
ferent precision for the exponent, trading precision for hardware cost and bits in the capability
format.

Alternative precision for T and B Currently we use 20-bits to represent top and bottom
bounds (T and B). This gives us a great deal of precision but reducing these bit widths may well
be workable for a broad range of software. In particular, we may wish to reduce the size of these
fields in the sealed capability format since sealed objects are a new concept and introducing
strong alignment requirements does not appear to have significant penalty. Similarly, the bit
widths could be increased for better precision.

Alternative otype size We may wish to adjust the field widths for the sealed capability format
to allow a larger otype, thereby allowing more sandboxes without risk of otype reuse.

Alternative perms We may wish to adjust field widths to increase the number of permission
bits.
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Chapter 9

CHERI in High-Assurance Systems

We intend to produce a chapter of the ongoing CHERI formal methods document [77]) (or
possibly a separate technical report), describing how we used formal methods when developing
CHERI. In the present chapter, we give a informal explanation of some features of the CHERI
mechanism that may of interest to developers of high-assurance hardware, secure microkernels,
and formal models of CHERI.

9.1 Unpredictable Behavior

In the pseudocode for the CHERI instructions in Chapter 5, we try to avoid defining behavior
as “unpredictable”. There were several reasons for avoiding unpredictable behavior, including
the difficulty it creates for formal verification. Although CHERI is based on the MIPS ISA,
the MIPS ISA specification (e.g., for the R4000) makes extensive use of “unpredictable”. If
“unpredictable” is modeled as “anything could happen”, then clearly the system is not secure.
As a concrete example, imagine a hypothetical CHERI implementation that contains a Trojan
horse such that when a sandboxed program executes an arithmetic instruction whose result is
“unpredictable”, it also changes the capability registers so that a capability granting access to
the entire virtual address space is placed in a capability register. If “unpredictable” means that
anything could happen, then this is compliant with the MIPS ISA; it is also obviously insecure.
Later versions of the MIPS ISA (e.g., MIPS64 volume I) make it clear that “unpredictable”
is more restrictive than this, saying that “unpredictable operations must not read, write, or
modify the contents of memory or internal state that is inaccessible in the current processor
mode”. However, that is clearly not strong enough.

For the CHERI mechanism to be secure, we require that programs whose behavior is “un-
predictable” according to the MIPS ISA do not modify memory or capability registers in a way
that allows the capability mechanism to be bypassed. One easy way to achieve this is that the
“unpredictable” case requires that neither the memory nor the capability registers are modified.

The test suite for our CHERI1 FPGA implementation checks that the CPU follows known
CHERI1-specific behavior in the “unpredictable” cases.
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9.2 Bypassing the Capability Mechanism Using the TLB
If a program can modify the TLB (the status register has CU0 set, KSU not equal to 2, EXL
set or IRL set), then it can bypass the capability mechanism by modifying the TLB. Although
composition with the Memory Management Unit and virtual-addressing mechanism in this
manner is a critical and intentional part of our design, it is worth considering the implications
from the perspective of high-assurance design. The “attack” is as follows: Consider a location
in memory whose virtual address is not accessible using the capability mechanism; take its
physical address and change the TLB so that its new virtual address is one to which you have a
capability, and then access the data through the new virtual address. There are several ways to
prevent this attack:

• In CheriBSD, user-space programs are unable to modify the TLB (except through system
calls such as mmap), and thus cannot carry out this attack. This security argument makes
it explicit that the security of the capability mechanism depends on the correctness of
the underlying operating system. However, this may not be adequate for high-assurance
systems.

• Similarly, a high-assurance microkernel could run untrusted code in user space, with
KSU=2, CU0 false, EXL false, and IRL false. A security proof for the combined hardware-
software system could verify that untrusted code cannot cause this condition to become
false except by reentering the microkernel via a system call or exception.

• A single-address-space microkernel that has no need for the TLB could run on a CHERI-
enabled CPU without a TLB. Our CHERI1 FPGA prototype can be synthesized in a
version without a TLB, and our formal model in the L3 specification language includes a
TLB-less variant. Removing the TLB for applications that don’t need it saves chip area,
and removes the risk that the TLB could be used as part of an attack.

• We are considering future extensions to CHERI that would allow the capability mech-
anism to be used for sandboxing in kernel mode; these would allow more control over
access to the TLB when in kernel mode. As well as enabling sandboxing of device drivers
in monolithic kernels such as that of CheriBSD, the same mechanism could also be used
by microkernels.

9.3 Malformed Capabilities
The encoding formats for capabilities can represent values that can never be created using the
capability instructions while taking the initial contents of the capability registers as a starting
point. For example, in the 256-bit representation, there are bit patterns corresponding to base
+ length > 264. The capability registers are cleared on reset, so there will never be malformed
capabilities in the initial register contents, and a CHERI instruction will never create malformed
capabilities from well-formed ones. However, DRAM is not cleared on system reset, so that it
is possible that the initial memory might contain malformed capabilities with the tag bit set.

Operating systems or microkernels are expected to initialize memory before passing refer-
ences to it to untrusted code. (If you give untrusted code a capability that has the Load Capability
permission and refers to uninitialized memory, you don’t know what rights you are delegating
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to it.) This means that untrusted code should not be in a position to make use of malformed
capabilities.

There are (at least) two implementation choices. An implementation of the CHERI instruc-
tions could perform access-control checks in a way that would work on both well-formed and
malformed capabilities. Alternatively, the hardware could be slightly simplified by performing
the checks in a way that might behave unexpectedly on malformed capabilities, and then rely
on the capability mechanism (plus the operating system initializing memory) to guarantee that
they will never become available to untrusted code.

If the hardware is designed to guard against malformed capabilities, this presents special
difficulties in testing. No program whose behavior is defined by the ISA specification will
ever trigger the case of encountering a malformed capability. (Programs whose behavior is
“unpredictable”, because they access uninitialized memory, may encounter them). However,
some approaches to automatic test generation may have difficulty constructing such tests.

More generally, however, uninitialized memory might also contain highly privileged and
yet entirely well-formed capabilities, and hence references to that memory should be given to
less trustworthy code only after suitable clearing. This requirement is present today for current
hardware, as uncleared memory on boot might contain sensitive data from prior boots, but this
requirement is reinforced in a capability-oriented environment.

9.4 Outline of Security Argument for a Reference Monitor
The CHERI ISA can be used to provide several different security properties (for example,
control-flow integrity or sandboxing). This section provides the outline of a security argument
for how the CHERI instructions can be used to implement a reference monitor.

The Trusted Computer System Evaluation Criteria (“Orange Book”)[69] expressed the re-
quirement for a reference monitor as “The TCB shall maintain a domain for its own execution
that protects it from external interference or tampering”.

The Common Criteria[40] contain a similar requirement:

“ADV ARC.1.1D The developer shall design and implement the [target of evalua-
tion] so that the security features of the [target of evaluation security functionality]
cannot be bypassed.”

“ADV ARC.1.2D The developer shall design and implement the [target of evalu-
ation security functionality] so that it is able to protect itself from tampering by
untrusted active entities.”

In this section, we we explain how the CHERI mechanism can be used to provide this
requirement(s), and provides a semi-formal outline of a proof of its correctness.

We are assuming that the system operates in an environment where the attacker does not
have physical access to the hardware, so that hardware-level attacks such as introducing mem-
ory errors[33] are not applicable.

In this section, we do not consider covert channels. There are many applications where
protection against covert channels is not a requirement. The CHERI1 FPGA implementation
has memory caches, which probably could be exploited as a covert channel.

The architecture we use to meet this requirement consists of (a) some trusted code that ini-
tializes the CPU and then calls the untrusted code; and (b) some untrusted code. The CHERI

223



capability mechanism is used to restrict which memory locations can be accessed by the un-
trusted code. Here, “trusted” means that, for the purpose of security analysis, we know what
the code does. The “untrusted” code, on the other hand, might do anything.

The reference monitor consists of the trusted code and the CHERI hardware; and the “se-
curity domain” provided for the reference monitor consists of a set of memory addresses (SK)
for the data, code, and stack segments of the trusted code, together with the CHERI reserved
registers.

Our security requirement of the hardware is that the untrusted code will run for a while,
eventually returning control to the trusted code; and when the trusted code is re-entered, (a) it
will be reentered at one of a small number of known entry points; (b) its code, data and stack
will not have been modified by the untrusted code; and (c) the reserved capability registers will
not have been modified by the untrusted code.

This security property provided by the hardware allows us to reason that the trusted code is
still trusted when it is reentered. If its code and data have not been modified. we can still know
what it will do (to the extent that it is actually trustworthy – not just “trusted”),

The “cannot be bypassed” and “tamperproof” requirements are here interpreted as meaning
that there is no way within the ISA to modify the reference monitor’s reserved memory or the
reserved registers. That is, all memory accesses are checked against a capability register, and
do not succeed unless the capability permits them. The untrusted code can access memory
without returning control to the trusted code; however, all of its memory access are mediated
by the capability hardware, which is considered to be part of the reference monitor. Tampering
with the reference monitor by making physical modifications to the hardware is considered to
be out of scope; the attacker is assumed not to have physical access.

The proof of this security property proceeds by induction on states. Let the predicate Se-
cureState refer to the following set of conditions:

• CP0.Status.KSU 6= 0

• CP0.Status.CU0 = false

• CP0.Status.EXL = false

• CP0.Status.ERL = false

• The TLB is initialized such that every entry has been initialized; every entry has a valid
page mask; and there is no (ASID, virtual address) pair that matches multiple entries.

• Let SU be a set of (virtual) memory addresses allocated for use by the untrusted code,
and TU a set of otype values allocated for use by the untrusted code.

• The set of virtual addresses SU does not contain an address that maps (under the TLB
state mentioned above) into any of the memory addresses reserved for use by the trusted
code’s code, stack or data segments.

• All capability registers have base + length ≤ 264 or tag = false.

• The above is also true of all capabilities contained within the set of memory addresses
SU .
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• All capability registers are either (a) reserved registers; (b) have tag = false; (c) are sealed
with an otype not in TU ; or do not grant Access System Registers permission.

• The above is also true of all capabilities contained within the set of memory addresses
SU .

• All capability registers are either (a) reserved registers; (b) have tag = false; (c) are sealed
with an otype not in TU ; or do not grant access to a region of virtual addresses outside of
SU .

• The above is also true of all capabilities contained within the set of memory addresses
SU .

• All capability registers are either (a) reserved registers; (b) have tag = false; (c) are sealed
with an otype not in TU ; or do not grant access to a region of the otype space outside of
TU .

• The above is also true of all capabilities contained within the set of memory addresses
SU .

• If the current instruction is in a branch delay slot, then the above restrictions on capability
registers also apply to the PCC value that is the target of the branch. That is, SecureState
is not true if the trusted code does a CJR that grants privilege and then runs the first
instruction of the untrusted code in the branch delay slot.

Let the predicate TCBEntryState refer to a state in which the trusted code has been rentered
at one of a small number of known entry points.

We assume that SecureState is true initially (i.e., a requirement of the trusted code is that
it puts the CPU into this state before calling the untrusted code). We then wish to show that
SecureState⇒ X (SecureState or TCBEntryState) (where X is the next operator in linear tem-
poral logic). By induction on states, SecureState⇒ TCBEntryState R SecureState (where R is
the release operator in linear temporal logic).

The argument that SecureState ⇒ X (SecureState or TCBEntryState) can be summarized
as:

• Given that CP0.Status.KSU 6= 0, CP0.Status.CU0 = false, CP0.Status.EXL = false and
CP0.Status.ERL = false, all instructions will either raise an exception (X TCBEntryS-
tate) or leave CP0 registers unchanged, leaving this part of the SecureState invariant
unchanged.

• Given that CP0.Status.KSU 6= 0 (etc.), all instructions will either raise an exception or
leave the TLB unchanged, preserving the parts of SecureState relating to the TLB.

• Given that the TLB is in the state given by SecureState, load and store operations will not
result in “undefined” or “unpredictable” behavior due to multiple matches in the TLB.

• Given that CP0.Status.KSU 6= 0 (etc.), and the TLB is in the state described above, no
instruction can result in behavior that is “undefined” according to the MIPS ISA. (The
MIPS ISA specification makes a distinction between “undefined” and “unpredictable”,
but our model in the L3 language combines the two).
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• However, instructions can still result in behavior that is “unpredictable” according to the
MIPS ISA. These cases can be dealt with by providing a CHERI-specific refinement of
the MIPS ISA (i.e. describing what CHERI does in these cases).

• The capability instructions preserve the part of SecureState that relates to the capability
registers and to capabilities within SU .

• Given that the capability registers (apart from reserved registers) do not grant access
to any memory addresses outside of SU , store instructions might raise an exception (X
TCBEntryState), but they will not modify locations outside of SU ; thus, the trusted code’s
data, code and stack segments will be unmodified.

• Given that the capability registers (apart from the reserved registers) do not grant Ac-
cess System Registers permission, the reserved registers will not be modified.

The theorem SecureState ⇒ TCBEntryState R SecureState uses the R operator, which is
a weak form of “until”: the system might continue in SecureState indefinitely. Sometimes
it is desirable to have the stronger property that TCBEntryState is guaranteed to be reached
eventually. This can be ensured by having the trusted code enable timer interrupts, and use a
timer interrupt to force return to TCBEntryState if the untrusted code takes too long.

More formally, the following properties are added to SecureState to make a new predicate,
SecureStateTimer:

• CP0.Status.IE = true

• CP0.Status.IM(7) = true

Given that CP0.Status.KSU 6= 0 (etc.), it follows that these properties are also preserved,
i.e. SecureStateTimer⇒ TCBEntryState R SecureStateTimer.

As CP0.Count increases by at least one for every instruction, a timer interrupt will eventu-
ally be triggered. (If Compare is 2, for example, and Count increments from 1 to 3 without ever
going through the intervening value of 2, a timer interrupt is still triggered). As CP0.KSU 6= 0,
CP0.Status.EXL = false, CP0.Status.ERL = false, CP0.Status.IE = true and CP0.Status.IM(7)
= true, the interrupt will be enabled and return to TCBEntryState will occur:

SecureStateTimer⇒ F TCBEntryState
It then follows that SecureStateTimer ⇒ SecureStateTimer U TCBEntryState, where U is

the until operator in linear temporal logic.
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Chapter 10

Research Context, Motivations, Approach,
and Evolution

In this chapter, we describe the research approach and methodology, grounded in hardware-
software co-design, used to develop the CHERI protection model and CHERI-MIPS ISA.

10.1 Motivation

The CHERI protection model provides a sound and formally based architectural foundation
for the principled development of highly trustworthy systems. The CHERI approach builds on
and extends decades of research into hardware and operating-system security.1 However, some
of the historic approaches that CHERI incorporates (especially capability architectures) have
not been adopted in commodity hardware designs. In light of these past transition failures, a
reasonable question is “Why now?” What has changed that could allow CHERI to succeed
where so many previous efforts have failed? Several factors have motivated our decision to
begin and carry out this project:

• Dramatic changes in threat models, resulting from ubiquitous connectivity and pervasive
uses of computer technology in many diverse and widely used applications such as wire-
less mobile devices, automobiles, and critical infrastructure. In addition, cloud comput-
ing and storage, robotics, software-defined networking. safety of autonomous systems,
and the Internet of Things have significantly widened the range of vulnerabilities that can
be exploited.

• An extended “arms race” of inevitable vulnerabilities and novel new attack mechanisms
has led to a cycle of “patch and pray”: systems will be found vulnerable, and have little
underlying robustness to attackers should even a single vulnerability be found. Defend-
ers must race to patch systems as vulnerabilities are announced – and vulnerabilities may
have long half-lives in the field, especially unpublicized ones. There is a strong need for

1Levy’s Capability-Based Computer Systems [55] provides a detailed history of segment- and capability-based
designs through the early 1990s [55]. However, it leaves off just as the transition to microkernel-based capability
systems such as Mach [2], L4 [56], and, later, seL4 [47], as well as capability-influenced virtual machines such as
the Java Virtual Machine [29], begins. Chapter 11 discuss historical influences on our work in greater detail.
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underlying architectures that offer stronger inherent immunity to attacks; when success-
ful attacks occur, robust architectures should yield fewer rights to attackers, minimize
gained attack surfaces, and increase the work factor for attackers.

• New opportunities for research into (and possible revisions of) hardware-software in-
terfaces, brought about by programmable hardware (especially FPGA soft cores) and
complete open-source software stacks such as FreeBSD [61] and LLVM [53].

• An increasing trend towards exposing inherent hardware parallelism through virtual ma-
chines and explicit software multi-programming, and an increasing awareness of infor-
mation flow for reasons of power and performance that may align well with the require-
ments of security.

• Emerging advances in programming languages, such as the ability to map language struc-
tures into protection parameters to more easily express and implement various policies.

• Reaching the tail end of a “compatibility at all costs” trend in CPU design, due to prox-
imity to physical limits on clock rates and trends towards heterogeneous and distributed
computing. While “Wintel” remains entrenched on desktops, mobile systems – such as
phones and tablet PCs, as well as appliances and embedded devices – are much more
diverse, running on a wide variety of instruction set architectures (especially ARM and
MIPS).

• Similarly, new diversity in operating systems has arisen, in which commercial prod-
ucts such as Apple’s iOS and Google’s Android extend open-source systems such as
FreeBSD, Mach [2], and Linux. These new platforms abandon many traditional con-
straints, requiring that rewritten applications conform to new security models, program-
ming languages, hardware architectures, and user-input modalities.

• Development of hybrid capability-system models (notably Capsicum [104]) that inte-
grate capability-system design tenets into current operating-system and language designs.
With CHERI, we are transposing this design philosophy into the instruction-set architec-
ture. Hybrid design is a key differentiator from prior capability-system processor designs
that have typically required ground-up software-architecture redesign and reimplementa-
tion.

• Significant changes in the combination of hardware, software, and formal methods to
enhance assurance (such as those noted above) now make possible the development of
trustworthy system architectures that previously were simply too far ahead of their times.

10.1.1 C-Language Trusted Computing Bases (TCBs)
Contemporary client-server and cloud computing are based on highly distributed applications,
with end-user components executing in rich execution substrates such as POSIX applications
on UNIX, or AJAX in web browsers. However, even thin clients are not thin in most practi-
cal senses: as with client-server computer systems, they are built from commodity operating-
system kernels, hundreds of user-space libraries, window servers, language runtime environ-
ments, and web browsers, which themselves include scripting language interpreters, virtual ma-
chines, and rendering engines. Both server and embedded systems likewise depend on complex
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(and quite similar) software stacks. All require confluence of competing interests, representing
multiple sites, tasks, and end users in unified computing environments.

Whereas higher-layer applications are able to run on top of type-safe or constrained exe-
cution environments, such as JavaScript interpreters, lower layers of the system must provide
the link to actual execution on hardware. As a result, almost all such systems are written in the
C programming language; collectively, this Trusted Computing Base (TCB) consists of many
tens of millions of lines of trusted (but not trustworthy) C and C++ code. Coarse hardware, OS,
and language security models mean that much of this code is security-sensitive: a single flaw,
such as an errant NULL pointer dereference in the kernel, can expose all rights held by users
of a system to an attacker or to malware.

The consequences of compromise are serious, and include loss of data, release of personal
or confidential information, damage to system and data integrity, and even total subversion of a
user’s online presence and experience by the attacker (or even accidentally without any attacker
presence!). These problems are compounded by the observation that the end-user systems are
also an epicenter for multi-party security composition, where a single web browser or office
suite (which manages state, user interface, and code execution for countless different security
domains) must simultaneously provide strong isolation and appropriate sharing. The results
present not only significant risks of compromise that lead to financial loss or disruption of
critical infrastructure, but also frequent occurrences of such events.

Software vulnerabilities appear inevitable; indeed, an arms race has arisen in new (often
probabilistic) software-based mitigation techniques and exploit techniques that bypass them.
Even if low-level escalation techniques (such as arbitrary code injection and code reuse at-
tacks) could be prevented, logical errors and supply-chain attacks will necessarily persist. Past
research has shown that compartmentalizing applications into components executed in isolated
sandboxes can mitigate exploited vulnerabilities (sometimes referred to as privilege separation).
Only the rights held by a compromised component are accessible to a successful attacker. This
technique is effectively applied in Google’s Chromium web browser, placing HTML rendering
and JavaScript interpretation into sandboxes isolated from the global file system. Compart-
mentalization exploits the principle of least privilege: if each software element executes with
only the rights required to perform its task, then attackers lose access to most all-or-nothing
toeholds; vulnerabilities may be significantly or entirely mitigated, and attackers must identify
many more vulnerabilities to accomplish their goals.

10.1.2 The Software Compartmentalization Problem

The compartmentalization problem arises from attempts to decompose security-critical soft-
ware into components running in different security domains: the practical application of the
principle of least privilege to software. Historically, compartmentalization of TCB components
such as operating system kernels and central system services has caused significant difficulty
for software developers – which limits its applicability for large-scale, real-world applications,
and leads to the abandonment of promising research such as 1990s microkernel projects. A
recent resurgence of compartmentalization, applied in userspace to system software and appli-
cations such as OpenSSH [81] and Chromium [83], and more recently in our own Capsicum
project [104], has been motivated by a critical security need; however it has seen success only
at very coarse separation granularity due to the challenges involved. A more detailed history of
work in this area can be found in Chapter 11.
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On current conventional hardware, native applications must be converted to employ mes-
sage passing between address spaces (or processes) rather than using a unified address space
for communication, sacrificing programmability and performance by transforming a local pro-
gramming problem into a distributed systems problem. As a result, large-scale compartmen-
talized programs are difficult to design, write, debug, maintain, and extend; this raises serious
questions about correctness, performance, and most critically, security.

These problems occur because current hardware provides strong separation only at coarse
granularity via rings and virtual address spaces, making the isolation of complete applications
(or even multiple operating systems) a simple task, but complicates efficient and easily ex-
pressed separation between tightly coupled software components. Three closely related prob-
lems arise:

Performance is sacrificed. Creating and switching between process-based security domains
is expensive due to reliance on software and hardware address-space infrastructure – such as
a quickly overflowed Translation Look-aside Buffer (TLB) and large page-table sizes that can
lead to massive performance degradation. Also, above an extremely low threshold, perfor-
mance overhead from context switching between security domains tends to go from simply
expensive to intolerable: each TLB entry is an access-control list, with each object (page) re-
quiring multiple TLB entries, one for each authorized security domain.

High-end server CPUs typically have TLB entries in the low hundreds, and even recent net-
work embedded devices reach the low thousands; the TLB footprint of fine-grained, compart-
mentalized software increases with the product of in-flight security domains and objects due to
TLB aliasing, which may easily require tens or hundreds of thousands of spheres of protection.
The transition to CPU multi-threading has not only failed to relieve this burden, but actively
made it worse: TLBs are implemented using ternary content-addressable memory (TCAMs) or
other expensive hardware lookup functions, and are often shared between hardware threads in
a single core due to their expense.

Similar scalability critiques apply to page tables, the tree-oriented in-memory lookup tables
used to fill TLB entries. As physical memory sizes increase, and reliance on independent virtual
address spaces for separation grows, these tables also grow – competing for cache and memory
space.

In comparison, physically indexed general-purpose CPU caches are several orders of mag-
nitude larger than TLBs, scaling instead with the working set of code paths explored or the
memory footprint of data actively being used. If the same data is accessed by multiple security
domains, it shares data or code cache (but not TLB entries) with current CPU designs.

Programmability is sacrificed. Within a single address space, programmers can easily and
efficiently share memory between program elements using pointers from a common names-
pace. The move to multiple processes frequently requires the adoption of a distributed pro-
gramming model based on explicit message passing, making development, debugging, and
testing more difficult. RPC systems and higher-level languages are able to mask some (al-
though usually not all) of these limitations, but are poorly suited for use in TCBs – RPC sys-
tems and programming language runtimes are non-trivial, security-critical, and implemented
using weaker lower-level facilities.2

2Through extreme discipline, a programming model can be constructed that maintains synchronized mappings
of multiple address spaces, while granting different rights on memory between different processes. This leads
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Security is sacrificed. Current hardware is intended to provide robust shared memory com-
munication only between mutually trusting parties, or at significant additional expense; gran-
ularity of delegation is limited and its primitives expensive, leading to programmer error and
extremely limited use of granular separation. Poor programmability contributes directly to poor
security properties.

10.2 Methodology

Despite half a century of research into computer systems and software design, it is clear that
security remains a challenging problem – and an increasingly critical problem as computer-
based technologies find ever expanding deployment in all aspects of contemporary life, from
mobile communications devices to self-driving cars and medical equipment. There are many
contributing factors to this problem, including the asymmetric advantage held by attackers over
defenders (which cause minor engineering mistakes to lead to undue vulnerability), the diffi-
culties in assessing – and comparing – the security of systems, and market pressures to deliver
products sooner rather than in a well-engineered state. Perhaps most influential is the pressure
for backward compatibility, required to allow current software stacks to run undisturbed on new
generations of systems, as well as to move seamlessly across devices (and vendors), locking in
least-common-denominator design choices, and preventing the deployment of more disruptive
improvements that serve security.

Both the current state, and worse, the current direction, support a view that today’s com-
puter architectures (which underlie phenomenal growth of computer-based systems) are fun-
damentally “unfit for purpose”: Rather than providing a firm foundation on which higher-level
technologies can rest, they undermine attempts to build secure systems that depend on them.
To address this problem, we require designs that mitigate, rather than emphasize, inevitable
bugs, and offer strong and well-understood protections on which larger-scale systems can be
built. Such technologies can be successful only if transparently adoptable by end users – and,
ideally, also many software developers. On the other hand, the resulting improvement must be
dramatic to justify adopting substantive architectural change, and while catering to short-term
problems, must also offer a longer-term architectural vision able to support further benefit as
greater investment is made.

10.2.1 Technical Objectives and Implementation

From a purely technical perspective, the aim of the CHERI project is to introduce architectural
support for the principle of least privilege in order to encourage its direct utilization at all lev-
els of the software stack. Current computer architectures make this extremely difficult as they
impose substantial performance, robustness, compatibility, and complexity penalties in doing
so – strongly disincentivizing adoption of such approaches in off-the-shelf system designs de-
spite the potential to mitigate broad classes of known (and also as-yet unknown) vulnerability
classes.

to even greater TLB pressure and expensive context switch operations, as the layouts of address spaces must be
managed using cross-address-space communication. Bittau has implemented this model via sthreads, an OS prim-
itive that tightly couples UNIX processes via shared memory associated with data types – a promising separation
approach constrained by the realities of current CPU design [9].
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Low-level Trusted Computing Bases (TCBs) are typically written in memory-unsafe lan-
guages such as C and C++, which do not offer compatible or performant protection against
pointer corruption, buffer overflows, or other vulnerabilities arising from that lack of safety not
offered directly by the architecture. Similarly, software compartmentalization, which mitigates
both low-level vulnerabilities grounded in program representation and high-level application
vulnerabilities grounded in logical bugs, is poorly supported by current MMUs, leading to
substantial (crippling) loss of programmability and performance as the technique is deployed.

CHERI also seeks to minimize disruption of current designs, in order to support incre-
mental adoption with significant transparency: Ideally, CHERI could be “slid under” current
software stacks (such as Apple’s iOS ecosystem, or Google’s Android ecosystem), allowing
non-disruptive introduction, yet providing an immediate reward for adoption. This requires
supporting current low-level languages such as C and C++ more safely, but also cleanly supple-
menting MMU-based programming models required to support current operating systems and
virtualization techniques. These goals have directed many key design choices in the CHERI-
MIPS ISA.

10.2.2 Hardware-Software Co-Design Methodology
Changes to the hardware-software interface are necessarily disruptive. The ISA is a “narrow
waist” abstraction that allows hardware designers to pursue sophisticated optimization strate-
gies (e.g., to exploit parallelism), while software developers can simultaneously depend on a
(largely unchanging) interface to build successively larger and more complex artifacts. Stable
ISAs have allowed the development of operating systems and application suites that can op-
erate successfully on a range of systems, and that outlast the specific platforms on which they
were developed.

This structure is inherently predisposed to non-disruption, as platforms that incur lower
adoption costs will be preferred to those that have higher costs. However, substantive changes
in underlying program representation, such as to support greater memory safety or fine-grained
compartmentalization required to dramatically improve security, require changes to the ISA.
We therefore aimed to:

• Iteratively explore disruptions to the ISA, projecting changes both up into the software
stack including operating systems, compilers, and applications (to assess impact on com-
patibility and security), as well as down into microarchitecture (assessing impact on per-
formance and viability).

• Start with a conventional and well-established 64-bit RISC ISA, rather than re-invent the
wheel for general-purpose computation, to benefit from existing mature software stacks
that could then be used for validation.

• Employ realistic open-source software artifacts, including the FreeBSD operating sys-
tem, Clang/LLVM compiler suite, and an open-source application corpus, to ensure that
experiments were run with suitable scale, complexity, performance footprint, and id-
iomatic use.

• Employ realistic hardware artifacts, developing multiple FPGA soft-core based processor
prototypes able to validate key questions about integration with components such as the
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pipeline and memory hierarchy, as well as support performance validation for the full
stack including software.

• Employ formal models of the ISA, to provide an executable gold model for testing, from
which tests can be automatically generated, and against which theorem proving can be
deployed to ensure that key properties relied on for software security actually hold.

• Pursue the hypothesis that historic capability-system models, designed to support im-
plementation of the principle of least privilege, can be hybridized with current software
approaches to support compatible and efficient fine-grained memory protection and com-
partmentalization.

• Take an initially purist capability-system view, incrementally adapting that model to-
wards one able to efficiently yet safely support the majority of current software use. This
approach allowed us to retain well-understood monotonicity and encapsulation proper-
ties, as well as pursue capturing notions of explicit valid provenance enforcement and
intentional use not well characterized in prior capability-system work. Appropriately but
uncompromisingly represented, these properties have proven to align remarkably well
with current OS and language designs.

• Aim specifically to cleanly compose with conventional MMUs and MMU-based software
designs by providing an in-address-space protection model, as well as be able to represent
C-language pointers as capabilities.

• Support incremental adoption, allowing significant benefit to be gained through mod-
est efforts (such as re-compiling) for selected software, while not disrupting binary-
compatible execution of legacy applications. Likewise, support incremental deployment
of more disruptive compartmentalization into key software through greater (but selective)
investment.

• Provide primitives that offer immediate short-term benefit (e.g., invulnerability to com-
mon pointer-based exploit techniques, scalable sandboxing of libraries in key software
packages), while also offering a longer-term vision for future software structure grounded
in strong memory safety and fine-grained compartmentalization.

10.3 Research and Development
Between 2010 and 2017, five major versions of the CHERI-MIPS ISA developed a mature hy-
bridization of conventional RISC architecture with a strong (but software-compatible) capability-
system model. Key research and development milestones can be found in Figure 10.1 including
major publications. The major ISA versions, with their development focuses, are described in
Table 10.3. This work occurred in several major overlapping phases as aspects of the approach
were proposed, refined, and stabilized through a blend of ISA design, integrated hardware and
software prototyping, and validation of the combined stack.

2010–2015: Composing the MMU with a capability-system model
A key early design choice was that the capability-system model would be largely orthogonal
to the current MMU-based virtual-memory model, yet also compose with it cleanly [121].
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Table 10.1: CHERI ISA revisions and major development phases
Year(s) Version Description

2010- ISAv1 RISC capability-system model w/64-bit MIPS
2012 Capability registers and tagged memory

Guarded manipulation of registers
2012 ISAv2 Extended tagging to capability registers

Capability-aware exception handling
MMU-based OS with CHERI support

2014 ISAv3 [111] Fat pointers + capabilities, compiler
Instructions to optimize hybrid code
Sealed capabilities, CCall/CReturn

2015 ISAv4 [113] MMU-CHERI integration (TLB permissions)
ISA support for compressed capabilities
Hardware-accelerated domain switching
Multicore instructions: LL/SC variants

2016 ISAv5 [114] CHERI-128 compressed capability model
Improved generated code efficiency
Initial in-kernel privilege limitations

2017 ISAv6 [112] Mature kernel privilege limitations
Further generated code efficiency
CHERI-x86 and CHERI-RISC-V sketches
Jump-based protection-domain transition

We chose to place the capability-system model “before” the MMU, causing capabilities to be
interpreted with respect to the virtual, rather than physical, address space. This reflected the
goal of providing fine-grained memory protection and compartmentalization within address
spaces – i.e., with respect to the application-programmer model of memory.

Capabilities therefore protect and implement virtual addresses dereferenced in much the
same way that integer pointers are interpreted in conventional architectures. Exceptions allow
controlled escape from the capability model by providing access to privileged capability regis-
ters, and execution in privileged rings grants the ability to manipulate the virtual address space,
controlling the interpretation of virtual addresses embedded in capabilities.

This approach tightly integrates the capability-system model with the pipeline and regis-
ter file, requiring that capabilities be first-class primitives managed by the compiler, held in
registers, and so on. In order to protect capabilities in the virtual address space, we chose
to physically tag them, distinguishing strongly protected pointers from ordinary data, in turn
extending the implementation of physical memory, but also making that protection entirely
independent from (and non-bypassable by) the MMU mechanism.

2012–2014: Composing C pointers with the capability-system mode
Another key early design choice was the goal of using capabilities to implement C-language
pointers – initially discretionarily (i.e., as annotated in the language), and later ubiquitously
(i.e., for all virtual addresses in a more-secure program). This required an inevitable negotia-
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tion between C-language semantics and the capability-system model, in order to ensure strong
compatibility with current software [14, 62].

For example, C embeds a strong notion that pointers point within buffers. This requires
that CHERI capabilities distinguish the notion of current virtual address from the bounds of the
containing buffer – while also still providing strong integrity protection to the virtual address.
This led us to compose fat-pointer [41, 68, 71] and capability semantics as the capability-system
model evolved.

Similarly, we wished to allow all pointers to be represented as capabilities – including
those embedded within other data structures – leading naturally to a choice to mandatorily tag
pointers in memory. A less obvious implication of this approach is that operations such as
memory copying must be capability-oblivious, maintaining the tag across pointer-propagating
memory operations, requiring that data and capabilities not only be intermingled in memory,
but also in register representation. Capability registers are therefore also tagged, allowing them
to hold data or capabilities, preserving provenance transparently.

As part of this work, we also assisted with the development of new formal semantics for
the C programming language, ensuring that we met the practical requirements of C programs,
but also assisting in formalizing the protection properties we offer (e.g., strong protection of
provenance validity grounded in an implied pointer provenance model in C).

CHERI should be viewed as providing primitives to support strong C-language pointer
protection, rather than as directly implementing that protection: it is the responsibility of the
compiler (and also operating system and runtime) to employ capabilities to enforce protections
where desired – whether by specific memory type, based on language annotations, or more
universally. The compiler can also perform analyses to trade off source-code and binary com-
patibility, enforcing protection opportunistically in responding to various potential policies on
tolerance to disruption.

2014–2015: Fine-grained compartmentalization
A key goal of our approach was to differentiate virtualization (requiring table-based lookups,
and already implemented by the MMU) from protection (now implemented as a constant-time
extension to the pointer primitive), which would avoid table-oriented overheads being imposed
on protection. This applies to C-language protection, but also to the implementation of higher-
level security constructs such as compartmentalization [118, 115].

Compartmentalization depends on two underlying elements: strong isolation and controlled
communication bridging that isolation. Underlying monotonicity in capabilities – i.e., that a
delegated reference to a set of rights cannot be broadened to include additional rights – directly
supports the construction of confined components within address spaces. Using this approach,
we can place code in execution with only limited access to virtual memory, constructing “sand-
boxes” (and other more complex structures) within conventional processes. The CHERI ex-
ception model permits transition to a more privileged component – e.g., the operating-system
kernel or language runtime – allowing the second foundation, controlled communication, to be
implemented.

Compartmentalization is facilitated by further extensions to the capability model, includ-
ing a notion of “sealed” (or encapsulated capabilities). In CHERI, this is implemented as a
software-defined capability: one that has no hardware interpretation (i.e., cannot be derefer-
enced), and also strong encapsulation (i.e., whose fields are immutable). Other aspects of the
model include a type mechanism allowing sealed code and data capabilities to be inextricably
linked; pairs of sealed code capabilities and data capabilities can then be used to efficiently
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describe protection domains via an object-capability model. We provide some hardware assis-
tance for protection-domain switching, providing straightforward parallel implementation of
key checks, but leave the implementation of higher-level aspects of switching to the software
implementation.

Here, as with C-language integration, it is critical that CHERI provide a general-purpose
mechanism rather than enforce a specific policy: the sealed capability primitive can be used
in a broad variety of ways to implement various compartmentalization models with a range
of implied communication and event models for software. We have experimented with sev-
eral such models, including a protection-domain crossing primitive modeled on a simple (but
now strongly protected) function call, and also on asynchronous message passing. Our key
performance goal was fixed (low) overhead similar to a function call, avoiding overheads that
scale with quantity of memory shared (e.g., as is the case with table-oriented memory sharing
configured using the MMU).

2015–2017: Architectural and microarchitectural efficiency
Side-by-side with development of a mature capability-based architectural model, we also ex-
plored the implications on performance. This led to iterative refinement of the ISA to improve
generated code, but also substantive efforts to ensure that there was an efficient in-memory rep-
resentation of capabilities, as well as microarchitectural implementations of key instructions.

A key goal was to maintain the principle of a load-store architecture by avoiding combining
computations with memory accesses – already embodied by both historic and contemporary
RISC architectures. While pointers are no longer conflated with integer values, a natural com-
position of the capability model and ISA maintains that structural goal without difficulty.

One important effort lay in the reduction from a 256-bit capability (capturing the require-
ments of software for 64-bit pointer, 64-bit upper bound, and 64-bit lower bound, as well as
additional metadata such as permissions) to a 128-bit compressed representation. We took
substantial inspiration from published work in pointer compression [49], but found that our
C-language compatibility requirements imposed a quite different underlying model and repre-
sentation. For example, it is strictly necessary to support the common C-language idiom of
permitting out-of-bounds pointers (but not dereference), which had been precluded by many
proposed schemes [14, 62]. Similarly, the need to support sealed capabilities led to efforts to
characterize the tradeoff between the type space (the number of unique classes that can be in ex-
ecution in a CHERI address space) and bounds precision (the alignment requirements imposed
on sealed references).

Another significant effort lay in providing in-memory tags, which are not directly sup-
ported by current DRAM layouts. In our initial implementation, we relied on a flat tag table
(supported by a dedicated tag cache). This imposed a uniform (and quite high) overhead in
additional DRAM accesses across all memory of roughly 10%. We have developed new mi-
croarchitectural techniques to improve emulated tag performance, based on a hierarchical table
exploiting sparse use of pointers in memory, to reduce this overhead to < 2% even with very
high pointer density (e.g., in language runtimes).

2016–2017: Kernel Compartmentalization
Our initial design focus was on supporting fine-grained memory protection within the user
virtual address space, and implicitly, also compartmentalization. Beyond an initial microkernel
brought up to validate early capability model variants, kernel prototypes through much of our
project have eschewed use of capability-aware code in the kernel due to limitations of the
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compiler, but also because of a focus on large userspace TCBs such as compression libraries,
language runtimes, web browsers, and so on, which are key attack surfaces.

We have more recently returned to in-kernel memory protection and compartmentalization,
where the CHERI model in general carries through without change – code executing in the
kernel is not fundamentally different from code executing in userspace. The key exception is
a set of management instructions available to the kernel, able to manipulate the MMU (and
hence the interpretation of capabilities), as well as control features such as interrupt delivery
and exception handling. We are now extending CHERI to allow the capability mechanism to
control access to these features so that code can be compartmentalized within the kernel. We are
also pursuing changes to the exception-based domain-transition mechanism used in earlier ISA
revisions that shift towards a jump-based model, which will avoid exception-related overheads
in the microarchitecture.

10.3.1 CHERI ISAv6: Looking Beyond MIPS

As we wrap up work on CHERI ISAv6, we are looking beyond the 64-bit MIPS ISA on which
we based our hardware-software co-design effort towards further ISAs. These range from the
still-developing open-source RISC-V ISA (which strongly resembles the MIPS ISA and hence
to which most CHERI ideas will apply with minor translation) to the widely used Intel x86-
64 instruction set (which is quite far from the RISC foundations in which we have developed
CHERI). This exploration has allowed us to derive a more general CHERI protection model
from our work, rather than seeing CHERI as simply an extension to MIPS. We have focused
on developing portable software-facing primitives and abstractions potentially supported by a
variety of architectural expressions. We take some inspiration from the diverse range of MMU
semantics and interfaces providing a common virtual-memory abstraction, and process model,
across a broad range of architectures. New versions of the ISA specification also explore in
much greater detail how architecture protection can be exploited by operating systems and
compilers to reinforce program structure and mitigate vulnerabilities.

10.4 A Hybrid Capability-System Architecture

Unlike past research into capability systems, CHERI allows traditional address-space separa-
tion, implemented using a memory management unit (MMU), to coexist with granular decom-
position of software within each address space. Similarly, we have aimed to model CHERI
capability behavior not only on strong capability semantics (e.g., monotonicity), but also to
be compatible with C-language pointer semantics. As a result, fine-grained memory protec-
tion and compartmentalization can be applied selectively throughout existing software stacks
to provide an incremental software migration path. We envision early deployment of CHERI
extensions in selected components of the TCB’s software stack: separation kernels, operat-
ing system kernels, programming language runtimes, sensitive libraries such as those involved
in data compression or encryption, and network applications such as web browsers and web
servers.

CHERI addresses current limitations on memory protection and compartmentalization by
extending virtual memory-based separation with hardware-enforced, fine-grained protection
within address spaces. Granular memory protection mitigates a broad range of previously

238



exploitable bugs by coercing common memory-related failures into exceptions that can be han-
dled by the application or operating system, rather than yielding control to the attacker. The
CHERI approach also restores a single address-space programming model for compartmental-
ized (sandboxed) software, facilitating efficient, programmable, and robust separation through
the capability model.

We have selected this specific composition of traditional virtual memory with an in-address-
space security model to facilitate technology transition: in CHERI, existing C-based software
can continue to run within processes, and even integrate with capability-enhanced software
within a single process, to provide improved robustness for selected software components –
and perhaps over time, all software components. For example, a sensitive library (perhaps used
for image processing) might employ capability features while executing as part of a CHERI-
unaware web browser. Likewise, a CHERI-enabled application can sandbox and instantiate
multiple copies of unmodified libraries, to efficiently and easily gate access to the rest of appli-
cation memory of the host execution environment.

10.5 A Long-Term Capability-System Vision
While we have modeled CHERI as a hybrid capability-system architecture, and in particular
described a well-defined and practical composition with MMU-based designs, CHERI can also
support more “pure” capability-oriented hardware and software designs. At one extreme in this
spectrum, we have begun early experimentation with an MMU-free processor design offering
solely CHERI-based protection for software use. We are able to layer a CHERI-specific mi-
crokernel over this design, which executes all programs within a single address-space object-
capability model. This approach might be appropriate to microcontroller-scale systems, to
avoid the cost of an MMU, and in which conventional operating systems might be inappropri-
ate. The approach might also be appropriate to very large-scale systems, in which an MMU
is unable to provide granular protection and isolation due to TLB pressure requiring a shift to
very large page sizes.

However, in retaining our primary focus on a hybridization between MMU- and capability-
based approaches, software designs can live at a variety of points in a spectrum between pure
MMU-based and solely CHERI-based models. A CHERI-based microkernel might be used,
for example, within a conventional operating-system kernel to compartmentalize the kernel –
while retaining an MMU-based process model. A CHERI-based microkernel might similarly
be used within an MMU-based process to compartmentalize a large application. Finally, the
CHERI-based microkernel might be used to host solely CHERI-based software, much as in an
MMU-less processor design, leaving the MMU dormant, or restricted to specific uses such as
full-system virtualization – a task for which the MMU is particularly well suited.

10.6 Threat Model
CHERI protections constrain code “in execution” and allow fine-grained management of priv-
ilege within a framework for controlled separation and communication. Code in execution can
represent the focus of many potentially malicious parties: subversion of legitimate code in vio-
lation of security policies, injection of malicious code via back doors, Trojan horses, and mal-
ware, and also denial-of-service attacks. CHERI’s fine-grained memory protection mitigates
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many common attack techniques by implementing bounds and permission checks, reducing
opportunities for the conflation of code and data, corruption of control flow, and also catches
many common exploitable programmer bugs; compartmentalization constrains successful at-
tacks via pervasive observance of the principle of least privilege.

Physical attacks on CHERI-based systems are explicitly excluded from our threat model, al-
though CHERI CPUs might easily be used in the context of tamper-evident or tamper-resistant
systems. Similarly, no special steps have been taken in our design to counter undesired leakage
of electromagnetic emanations and certain other side channels such as acoustic inferences: we
take for granted the presence of an electronic foundation on which CHERI can run. CHERI
will provide a supportive framework for a broad variety of security-sensitive activities; while
not itself a distributed system, CHERI could form a sound foundation for various forms of
distributed trustworthiness.

CHERI is an ISA-level protection model that does not address increasingly important CPU-
or bus-level covert and side-channel attacks, relying on the micro-architecture to limit implicit
data flows. In some sense, CHERI in fact increases exposure: the greater the offers of protection
within a system, the greater the potential impact of unauthorized communication channels.
As such, we hope side-channel attacks are a topic that we will be able to explore in future
work. Overall, we believe that our threat model is realistic and will lead to systems that can
be substantially more trustworthy than today’s commodity systems – while recognizing that
ISA-level protections must be used in concert with other protections suitable to different threat
models.

10.7 Formal Methodology
Throughout this project, we apply formal methodology to help avoid system vulnerabilities.
An important early observation is that existing formal methodology applied to software se-
curity has significant problems with multi-address-space security models; formal approaches
have relied on the usefulness of addresses (pointers) as unique names for objects. Whereas this
weakness in formal methods is a significant problem for traditional CPU designs, which offer
security primarily through rings and address-space translation, CHERI’s capability model is
scoped within address spaces. This offers the possibility of applying existing software proof
methodology in the context of hardware isolation (and other related properties) in a manner that
was previously infeasible. We are more concretely (and judiciously) applying formal method-
ology in five areas:

1. We have developed a formal semantics for the CHERI-MIPS ISA described in SRI’s Pro-
totype Verification System (PVS) – an automated theorem-proving and model-checking
toolchain – which can be used to verify the expressibility of the ISA, but also to prove
properties of critical code. For example, we are interested in proving the correctness of
software-based address-space management and domain transitions. We are likewise able
to automatically generate ISA-level test suites from formal descriptions of instructions,
which are applied directly to our hardware implementation.

2. We have also developed a more complete CHERI-MIPS ISA model incorporating both
MIPS and CHERI instructions using Cambridge’s L3 instruction-set description lan-
guage. Although we have not yet used this for automated theorem proving, we increas-
ingly use the L3 description as a “gold model” of the instruction set against which our test
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suite is validated, software implementations can be tested in order to generate traces of
correct processor execution, and so on. We have used the L3 model to identify a number
of bugs in multiple hardware implementations of CHERI-MIPS, as well as to discover
software dependences on undefined instruction-set behavior.

3. We have developed extensions to the BSV compiler to export an HDL description to
SRI’s PVS and SAL model checker. We have also developed a new tool (Smten) for
efficient SMT (Satisfiability Modulo Theories) modeling of designs (using SRI’s Yices),
and another tool for automated extraction of key properties from larger designs in the
BSV language, both of which greatly simplify formal analysis. These tools will allow
us to verify low-level properties of the hardware design and use the power of model
checking and satisfiability solvers to analyze related properties. Ideally they will also
help link ISA-level specifications with the CPU implementation.

4. We have proven a number of properties about our “compressed” 128-bit capability im-
plementation to ensure that the protection and security properties present in the 256-bit
reference semantics (e.g., capability monotonicity) hold of the compressed version – and
that the compression and decompression algorithms are correct.

5. We have explored how CHERI impacts a formal specification of C-language semantics,
improving a number of aspects of our C-language compatibility (e.g., as relates to con-
formant handling of the intptr_t type).

A detailed description of formal methods efforts relating to CHERI may be found in the emerg-
ing draft CHERI Formal Methods Report [77].

10.8 Protection Model and Architecture
As our work on CHERI has proceeded, we have transitioned from a view in which CHERI is an
ISA extension to 64-bit MIPS to one in which CHERI is a general protection model that can be
expressed through a variety of approaches and mappings into multiple underlying ISAs. This
report describes a software-facing protection model (Chapter 2) focused on operating systems
and compilers, specific mapping into the 64-bit MIPS ISA for the purposes of experimentation
and evaluation (Chapters 3, 4 and 5), and architectural sketches for potential integration into
other ISAs (Chapter 6). However, we have taken a “ground-up” approach utilizing hardware-
software co-design to ensure that at least one complete concrete mapping exists that satifies
the practical engineering requirements of architecture, microarchitecture, compiler, operating
system, and applications, and hence define a specific CHERI-MIPS ISA that embodies those
goals.

Our selection of RISC as a foundation for the CHERI capability extensions is motivated by
two factors. First, simple instruction set architectures are easier to reason about, extend, and
implement. Second, RISC architectures (such as ARM and MIPS) are widely used in network
embedded and mobile device systems such as firewalls, routers, smart phones, and tablets –
markets with the perceived flexibility to adopt new CPU facilities, and also an immediate and
pressing need for improved security. CHERI’s new security primitives would also be useful in
workstation and server environments, which face similar security challenges.
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In its current incarnation, we have prototyped CHERI as an extension to the 64-bit MIPS
ISA. However, our approach – and more generally the CHERI protection model – is intended
to easily support other similar ISAs, such as 64-bit ARM and 64-bit RISC-V. The design prin-
ciples would also apply to other non-RISC ISAs, such as 32-bit and 64-bit Intel and AMD, but
require significantly more adaptation work, as well as careful consideration of the implications
of the diverse set of CPU features found in more CISC-like architectures.

It is not impossible to imagine pure-software implementations of the CHERI protection
model – not least, because we use these daily in our work through both cycle-accurate pro-
cessor simulations, and a higher-performance but less microarchitecturally realistic Qemu im-
plementation. Further, compiler-oriented approaches employing a blend of static checking
and dynamic enforcement could also approximate or implement CHERI protection seman-
tics (e.g., along the lines of software fault isolation techniques [95] or Google Native Client
(NaCl) [126]). We do, however, hypothesize that these implementations would be difficult
to accomplish without hardware assistance: for example, continuous checking of program-
counter and default data capability bounds, as well as atomic clearing of tags for in-memory
pointers during arbitrary memory writes might come at substantial expense in software, yet
being “free” in supporting hardware.

10.9 Hardware and Software Prototypes

As a central part of this research, we have developed reference prototypes of the CHERI ISA via
several CHERI processor designs. These prototypes allow us to explore, validate, evaluate, and
demonstrate the CHERI approach through realistic hardware properties and real-world software
stacks. A detailed description of the current prototypes, both from architectural and practical
use perspectives, may be found in our companion papers and technical reports, described in
Section 1.7.

Our first prototype (CHERI1) is based on Cambridge’s MAMBA research processor, and is
a single-threaded, multi-core implementation intended to allow us to explore ISA design trade-
offs with moderate microarchitectural realism. This prototype is implemented in the BSV HDL,
a high-level functional programming language for hardware design. CHERI1 is a pipelined
baseline processor implementing the 64-bit MIPS ISA, and incorporates an initial prototype of
the CHERI-MIPS capability coprocessor that includes capability registers and a basic capabil-
ity instruction set.

Exploring, and iterating over, a substantial instruction-set design space has been consider-
ably eased by our use of the Bluespec SystemVerilog [10] (BSV) Hardware Description Lan-
guage (the BSV HDL) in prototyping. BSV has allowed rapid redesigns as our understanding
of architectural, microarchitectural, and software requirements evolved – resulting from its use
of modular abstractions, encapsulation, and hierarchicalization.

Using the BSV hardware specification language and its Bluespec SystemVerilog, we are
able to run the CPU in simulation, and synthesize the CHERI design to execute in field-
programmable gate arrays (FPGAs). In our development work, we are targeting an Altera
FPGAs on Terasic development boards. However, in our companion MRC2 project we have
also targeted CHERI at the second-generation NetFPGA 10G and SUME research and teaching
boards, which we hope to use in ongoing research into datacenter network fabrics. That work
includes the development of Blueswitch, a BSV language implementation of an OpenFlow
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switch that can operate as a tightly coupled CHERI coprocessor. In the future, should it be-
come desirable, we will be able to construct an ASIC design from the same BSV specification.
We have released the CHERI soft core as open-source hardware, making it available for more
widespread use in research. This should allow others, especially in the research community, to
reproduce and extend our results.

We have also developed a second prototype (CHERI2), which is compatible with CHERI1
but has additional CPU features including fine-grained multi-threading. We have used this as
a platform for early exploration of the synergy between compartmentalization and parallelism
in multi-threaded processor designs. CHERI2 also employs a more stylized form of the BSV
language that is intended to considerably enhance our formal analysis of the hardware archi-
tecture.

In addition to the CHERI1 and CHERI2 implementations in BSV, we have implemented an
executable model of CHERI in the L3 ISA modeling language [27], and a high-performance
emulation in QEMU. The L3 and QEMU implementations support 256-bit capabilities and
multiple forms of 128-bit capabilities including compressed capabilities and “magic” uncom-
pressed capabilities, which are identical to 256-bit capabilities except for size. While intended
primarily for formal modeling and use as a test oracle, we have also found the L3 ISA modeling
language invaluable in practical design-space exploration.

As the CHERI security model is necessarily a hardware-software model, we have also
performed substantial experimentation with software stacks targeting the CHERI-MIPS ISA.
We have created an adaptation of the commodity open-source FreeBSD operating system,
CheriBSD, that supports a wide variety of peripherals on the Terasic tPad and DE4 FPGA
development boards; we use these boards in both mobile tablet-style and network configu-
rations. CheriBSD is able to manage the capability coprocessor, maintain additional thread
state for capability-aware user applications, expose both hybrid and pure-capability system-
call interfaces, and, increasingly, to use capability features for self protection against mali-
cious userspace software. CheriBSD also implements exception-handler support for object-
capability invocation, signal delivery when protection faults occur (allowing language runtimes
to catch and handle protection violations), and error recovery for in-process sandboxes. We
have adapted the Clang and LLVM compiler suite to allow language-level annotations in C to
direct capability use in a hybrid ABI. Additionally, we have implemented a pure-capability
compilation mode where all C pointers are capabilities. Using a mix of hybrid and pure-
capability ABIs, we have developed a number of capability-enhanced applications to demon-
strate fine-grained memory protection and in-process compartmentalization – to explore secu-
rity, performance, and programmability tradeoffs.
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Chapter 11

Historical Context and Related Work

As with many aspects of contemporary computer and operating system design, the origins of
operating system security may be found at the world’s leading research universities, but es-
pecially the Massachusetts Institute of Technology (MIT), the University of Cambridge, and
Carnegie Mellon University. MIT’s Project MAC, which began with MIT’s Compatible Time
Sharing System (CTSS) [16], and continued over the next decade with MIT’s Multics project,
described many central tenets of computer security [17, 34]. Dennis and Van Horn’s 1965 Pro-
gramming Semantics for Multiprogrammed Computations [20] laid out principled hardware
and software approaches to concurrency, object naming, and security for multi-programmed
computer systems – or, as they are known today, multi-tasking and multi-user computer sys-
tems. Multics implemented a coherent, unified architecture for processes, virtual memory,
and protection, integrating new ideas such as capabilities, unforgeable tokens of authority, and
principals, the end users with whom authentication takes place and to whom resources are
accounted [88].

In 1975, Saltzer and Schroeder surveyed the rapidly expanding vocabulary of computer se-
curity in The Protection of Information in Computer Systems [89]. They enumerated design
principles such as the principle of least privilege (which demands that computations run with
only the privileges they require) and the core security goals of protecting confidentiality, in-
tegrity, and availability. The tension between fault tolerance and security (a recurring debate
in systems literature) saw its initial analysis in Lampson’s 1974 Redundancy and Robustness
in Memory Protection [50], which considered ways in which hardware memory protection ad-
dressed accidental and intentional types of failure: if it is not reliable, it will not be secure,
and if it is not secure, it will not be reliable! Intriguingly, recent work by Nancy Leveson and
William Young has unified security and human safety as overarching emergent system proper-
ties [54], and allows the threat model to fall out of the top-down analysis, rather than driving
it. This work in some sense unifies a long thread of work that considers trustworthiness as
a property encompassing security, integrity, reliability, survivability, human safety, and so on
(e.g., [72, 74], among others).

The Security Research community also blossomed outside of MIT: Wulf’s HYDRA operat-
ing system at Carnegie Mellon University (CMU) [123, 15], Needham and Wilkes’ CAP Com-
puter at Cambridge [120], SRI’s Provably Secure Operating System (PSOS) [26, 74] hardware-
software co-design that included strongly typed object capabilities, Rushby’s security kernels
supported by formal methods at Newcastle [87], and Lampson’s work on formal models of se-
curity protection at the Berkeley Computer Corporation all explored the structure of operating
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system access control, and especially the application of capabilities to the protection prob-
lem [51, 52]. Another critical offshoot from the Multics project was Ritchie and Thompson’s
UNIX operating system at Bell Labs, which simplified concepts from Multics, and became the
basis for countless directly and indirectly derived products such as today’s Solaris, FreeBSD,
Mac OS X, and Linux operating systems [85].

The creation of secure software went hand in hand with analysis of security flaws: Ander-
son’s 1972 US Air Force Computer Security Technology Planning Study not only defined new
security structures, such as the reference monitor, but also analyzed potential attack method-
ologies such as Trojan horses and inference attacks [4]. Karger and Schell’s 1974 report on a
security analysis of the Multics system similarly demonstrated a variety of attacks that bypass
hardware and OS protection [44]. In 1978, Bisbey and Hollingworth’s Protection Analysis:
Project final report at ISI identified common patterns of security vulnerability in operating
system design, such as race conditions and incorrectly validated arguments at security bound-
aries [8]. Adversarial analysis of system security remains as critical to the success of security
research as principled engineering and formal methods.

Almost fifty years of research have explored these and other concepts in great detail, bring-
ing new contributions in hardware, software, language design, and formal methods, as well as
networking and cryptography technologies that transform the context of operating system secu-
rity. However, the themes identified in those early years remain topical and highly influential,
structuring current thinking about systems design.

Over the next few sections, we consider three closely related ideas that directly influence
our thinking for CTSRD: capability security, microkernel OS design, and language-based con-
straints. These apparently disparate areas of research are linked by a duality, observed by Mor-
ris in 1973, between the enforcement of data types and safety goals in programming languages
on one hand, and the hardware and software protection techniques explored in operating sys-
tems [66] on the other hand. Each of these approaches blends a combination of limits defined
by static analysis (perhaps at compile-time), limits on expression on the execution substrate
(such as what programming constructs can even be represented), and dynamically enforced
policy that generates runtime exceptions (often driven by the need for configurable policy and
labeling not known until the moment of access). Different systems make different uses of these
techniques, affecting expressibility, performance, and assurance.

11.1 Capability Systems

Throughout the 1970s and 1980s, high-assurance systems were expected to employ a capability-
oriented design that would map program structure and security policy into hardware enforce-
ment; for example, Lampson’s BCC design exploited this linkage to approximate least privi-
lege [51, 52].

Systems such as the CAP Computer at Cambridge [120] and Ackerman’s DEC PDP-1 ar-
chitecture at MIT [3] attempted to realize this vision through embedding notions of capabili-
ties in the memory management unit of the CPU, an approach described by Dennis and Van
Horn [20]. Levy provides a detailed exploration of segment- and capability-oriented computer
system design through the mid-1980s in Capability-Based Computer Systems [55].
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11.2 Microkernels
Denning has argued that the failures of capability hardware projects were classic failures of
large systems projects, an underestimation of the complexity and cost of reworking an entire
system design, rather than fundamental failures of the capability model [19]. However, the
benefit of hindsight suggests that the earlier demise of hardware capability systems was a result
of three related developments in systems research: microkernel OS design, a related interest
from the security research community in security kernel design, and Patterson and Sequin’s
Reduced Instruction-Set Computers (RISC) [80].

However, with a transition from complex instruction set computers (CISC) to reduced in-
struction set computers (RISC), and a shift away from microcode toward operating system
implementation of complex CPU functionality, the attention of security researchers turned to
microkernels.

Carnegie Mellon’s HYDRA [15, 124] embodied this approach, in which microkernel mes-
sage passing between separate tasks stood in for hardware-assisted security domain crossings
at capability invocation. HYDRA developed a number of ideas, including the relationship be-
tween capabilities and object references, refined the object-capability paradigm, and further
pursued the separation of policy and mechanism.1 Jones and Wulf argue through the HYDRA
design that the capability model allows the representation of a broad range of system policies
as a result of integration with the OS object model, which in turn facilitates interposition as a
means of imposing policies on object access [42].

Successors to HYDRA at CMU include Accent and Mach [82, 2], both microkernel systems
intended to explore the decomposition of a large and decidedly un-robust operating system ker-
nel. In microkernel designs, traditional OS services, such as the file system, are migrated out
of ring 0 and into user processes, improving debuggability and independence of failure modes.
They are also based on mapping of capabilities as object references into IPC pipes (ports), in
which messages on ports represent methods on objects. This shift in operating system design
went hand in hand with a related analysis in the security community: Lampson’s model for ca-
pability security was, in fact, based on pure message passing between isolated processes [52].
This further aligned with proposals by Andrews [5] and Rushby [87] for a security kernel,
whose responsibility lies solely in maintaining isolation, rather than the provision of higher-
level services such as file systems. Unfortunately, the shift to message passing also invalidated
Fabry’s semantic argument for capability systems, namely, that by offering a single names-
pace shared by all protection domains, the distributed system programming problem could be
avoided [25].

A panel at the 1974 National Computer Conference and Exposition (AFIPS) chaired by
Lipner brought the design goals and choices for microkernels and security kernels clearly into
focus: microkernel developers sought to provide flexible platforms for OS research with an eye
towards protection, while security kernel developers aimed for a high assurance platform for
separation, supported by hardware, software, and formal methods [57].

The notion that the microkernel, rather than the hardware, is responsible for implement-
ing the protection semantics of capabilities also aligned well with the simultaneous research
(and successful technology transfer) of RISC designs, which eschewed microcode by shifting
complexity to the compiler and operating system. Without microcode, the complex C-list pere-

1Miller has expanded on the object-capability philosophy in considerable depth in his 2006 PhD dissertation,
Robust composition: towards a unified approach to access control and concurrency control [64]
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grinations of CAP’s capability unit, and protection domain transitions found in other capability-
based systems, become less feasible in hardware. Virtual memory designs based on fixed-size
pages and simple semantics have since been standardized throughout the industry.

Security kernel designs, which combine a minimal kernel focused entirely on correctly im-
plementing protection, and rigorous application of formal methods, formed the foundation for
several secure OS projects during the 1970s. Schiller’s security kernel for the PDP-11/45 [90]
and Neumann’s Provably Secure Operating System [28] design study were ground-up operating
system designs based soundly in formal methodology.2 In contrast, Schroeder’s MLS kernel
design for Multics [91], the DoD Kernelized Secure Operating System (KSOS) [60], and Bruce
Walker’s UCLA UNIX Security Kernel [96] attempted to slide MLS kernels underneath ex-
isting Multics and UNIX system designs. Steve Walker’s 1980 survey of the state of the art in
trusted operating systems provides a summary of the goals and designs of these high-assurance
security kernel designs [97].

The advent of CMU’s Mach microkernel triggered a wave of new research into security ker-
nels. TIS’s Trusted Mach (TMach) project extended Mach to include mandatory access control,
relying on enforcement in the microkernel and a small number of security-related servers to im-
plement the TCB to accomplish sufficient assurance for a TCSEC B3 evaluation [11]. Secure
Computing Corporation (SCC) and the National Security Agency (NSA) adapted PSOS’s type
enforcement from LoCK (LOgical Coprocessor Kernel) for use in a new Distributed Trusted
Mach (DTMach) prototype, which built on the TMach approach while adding new flexibil-
ity [92]. DTMach, adopting ideas from HYDRA, separates mechanism (in the microkernel)
from policy (implemented in a userspace security server) via a new reference monitor frame-
work, FLASK [94]. A significant focus of the FLASK work was performance: an access vector
cache is responsible for caching access control decisions throughout the OS to avoid costly up-
calls and message passing (with associated context switches) to the security server. NSA and
SCC eventually migrated FLASK to the FLUX microkernel developed by the University of
Utah in the search for improved performance. Invigorated by the rise of microkernels and their
congruence with security kernels, this flurry of operating system security research also faced
the limitations (and eventual rejection) of the microkernel approach by the computer industry
– which perceived the performance overheads as too great.

Microkernels and mandatory access control have seen another experimental composition in
the form of Decentralized Information Flow Control (DIFC). This model, proposed by Myers,
allows applications to assign information flow labels to OS-provided objects, such as commu-
nication channels, which are propagated and enforced by a blend of static analysis and runtime
OS enforcement, implementing policies such as taint tracking [67] – effectively, a composition
of mandatory access control and capabilities in service to application security. This approach is
embodied by Efstathopoulos et al.’s Asbestos [23] and Zeldovich et al.’s Histar [127] research
operating systems.

Despite the decline of both hardware-oriented and microkernel capability system design,
capability models continue to interest both research and industry. Inspired by the propri-
etary KEYKOS system [37], Shapiro’s EROS [93] (now CapROS) continues the investiga-
tion of higher-assurance software capability designs, seL4 [47], a formally verified, capability-
oriented microkernel, has also continued along this avenue. General-purpose systems also have
adopted elements of the microkernel capability design philosophy, such as Apple’s Mac OS

2PSOS’s ground-up design included ground-up hardware, whereas Schiller’s design revised only the software
stack.
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X [6] (which uses Mach interprocess communication (IPC) objects as capabilities) and Cam-
bridge’s Capsicum [104] research project (which attempts to blend capability-oriented design
with UNIX).

More influentially, Morris’s suggestion of capabilities at the programming language level
has seen widespread deployment. Gosling and Gong’s Java security model blends language-
level type safety with a capability-based virtual machine [32, 30]. Java maps language-level
constructs (such as object member and method protections) into execution constraints enforced
by a combination of a pre-execution bytecode verification and expression constraints in the
bytecode itself. Java has seen extensive deployment in containing potentially (and actually) ma-
licious code in the web browser environment. Miller’s development of a capability-oriented E
language [64], Wagner’s Joe-E capability-safe subset of Java [63], and Miller’s Caja capability-
safe subset of JavaScript continue a language-level exploration of capability security [65].

11.3 Language and Runtime Approaches

Direct reliance on hardware for enforcement (which is central to both historic and current sys-
tems) is not the only approach to isolation enforcement. The notion that limits on expressibility
in a programming language can be used to enforce security properties is frequently deployed
in contemporary systems to supplement coarse and high-overhead operating-system process
models. Two techniques are widely used: virtual-machine instruction sets (or perhaps physi-
cal machine instruction subsets) with limited expressibility, and more expressive languages or
instruction sets combined with type systems and formal verification techniques.

The Berkeley Packet Filter (BPF) is one of the most frequently cited examples of the vir-
tual machine approach: user processes upload pattern matching programs to the kernel to avoid
data copying and context switching when sniffing network packet data [59]. These programs
are expressed in a limited packet-filtering virtual-machine instruction set capable of expressing
common constructs, such as accumulators, conditional forward jumps, and comparisons, but
are incapable of expressing arbitrary pointer arithmetic that could allow escape from confine-
ment, or control structures such as loops that might lead to unbounded execution time. Similar
approaches have been used via the type-safe Modula 3 programming language in SPIN [7],
and the DTrace instrumentation tool that, like BPF, uses a narrow virtual instruction set to
implement the D language [12].

Google’s Native Client (NaCl) model edges towards a verification-oriented approach, in
which programs must be implemented using a ‘safe’ (and easily verified) subset of the x86 or
ARM instruction sets, which would allow confinement properties to be validated [125]. NaCl
is closely related to Software Fault Isolation (SFI) [95], in which safety properties of machine
code are enforced through instrumentation to ensure no unsafe access, and Proof-Carrying
Code (PCC) in which the safe properties of code are demonstrated through attached and easily
verifiable proofs [70]. As mentioned in the previous section, the Java Virtual Machine (JVM)
model is similar; it combines runtime execution constraints of a restricted, capability-oriented
bytecode with a static verifier run over Java classes before they can be loaded into the execu-
tion environment; this ensures that only safe accesses have been expressed. C subsets, such
as Cyclone [41], and type-safe languages such as Ruby [86], offer similar safety guarantees,
which can be leveraged to provide security confinement of potentially malicious code without
hardware support.
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These techniques offer a variety of trade-offs relative to CPU enforcement of the process
model. For example, some (BPF, D) limit expressibility that may prevent potentially useful
constructs from being used, such as loops bounded by invariants rather than instruction limits;
in doing so, this can typically impose potentially significant performance overhead. Systems
such as FreeBSD often support just-in-time compilers (JITs) that convert less efficient virtual-
machine bytecode into native code subject to similar constraints, addressing performance but
not expressibility concerns [61].

Systems like PCC that rely on proof techniques have had limited impact in industry, and
often align poorly with widely deployed programming languages (such as C) that make for-
mal reasoning difficult. Type-safe languages have gained significant ground over the last
decade, with widespread use of JavaScript and increasing use of functional languages such
as OCaML [84]; they offer many of the performance benefits with improved expressibility,
yet have had little impact on operating system implementations. However, an interesting twist
on this view is described by Wong in Gazelle, in which the observation is made that a web
browser is effectively an operating system by virtue of hosting significant applications and en-
forcing confinement between different applications [98]. Web browsers frequently incorporate
many of these techniques including Java Virtual Machines and a JavaScript interpreter.

11.4 Bounds Checking and Fat Pointers
In contrast to prior capability systems, a key design goal for CHERI was to support mapping
C-language pointers into capabilities. In earlier prototypes, we did this solely through base
and bounds fields within capabilities, which worked well but required substantial changes to
existing C software that often contained programming idioms that violated monotonic rights
decrease for pointers. In later versions of the ISA, we adopt ideas from the C fat-pointer
literature, which differentiate the idea of a delegated region from a current pointer: while the
base and bounds are subject to guarded manipulation rules, we allow the offset to float within
and beyond the delegated region. Only on dereference are protections enforced, allowing a
variety of imaginative pointer operations to be supported. Many of these ideas originate with
the type-safe C dialect Cyclone [41], and see increasing adaptation to off-the-shelf C programs
with work such as Softbound [68], Hardbound [21], and CCured [71]. This flexibility permits
a much broader range of common C idiom to be mapped into the capability-based memory-
protection model.

11.5 Influences of Our Own Past Projects
Our CHERI capability hardware design responds to all these design trends – and their prob-
lems. Reliance on traditional paged virtual memory for strong address-space separation, as used
in Mach, EROS, and UNIX, comes at significant cost: attempts to compartmentalize system
software and applications sacrifice the programmability benefits of a language-based capabil-
ity design (a point made convincingly by Fabry [25]), and introduce significant performance
overhead to cross-domain security boundaries. However, running these existing software de-
signs is critical to improve the odds of technology transfer, and to allow us to incrementally
apply ideas in CHERI to large-scale contemporary applications such as office suites. CHERI’s
hybrid approach allows a gradual transition from virtual address separation to capability-based
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separation within a single address space, thus restoring programmability and performance so
as to facilitate fine-grained compartmentalization throughout the system and its applications.

We consider some of our own past system designs in greater detail, especially as they relate
to CTSRD:

Multics The Multics system incorporated many new concepts in hardware, software, and
programming [79, 18]. The Multics hardware provided independent virtual memory segments,
paging, interprocess and intra-process separation, and cleanly separated address spaces. The
Multics software provided symbolically named files that were dynamically linked for efficient
execution, rings of protection providing layers of security and system integrity, hierarchical di-
rectories, and access-control lists. Input-output was also symbolically named and dynamically
linked, with separation of policy and mechanism, and separation of device independence and
device dependence. A subsequent redevelopment of the two inner-most rings enabled Multics
to support multilevel security in the commercial product. Multics was implemented in a stark
subset of PL/I that considerably diminished the likelihood of many common programming er-
rors. In addition, the stack discipline inherently avoided buffer overflows.

PSOS SRI’s Provably Secure Operating System hardware-software design was formally spec-
ified in a single language, with encapsulated modular abstraction, interlayer state mappings,
and abstract programs relating each layer to those on which it depended [74, 75]. The hard-
ware design provided tagged, typed, unforgeable capabilities required for every operation, with
identifiers that were unique for the lifetime of the system. In addition to a few primitive types,
application-specific object types could be defined and their properties enforced with the hard-
ware assistance provided by the capability-based access controls. The design allowed applica-
tion layers to efficiently execute instructions, with object-oriented capability-based addressing
directly to the hardware – despite appearing at a much higher layer of abstraction in the design
specifications.

MAC Framework The MAC Framework is an OS reference-monitor framework used in
FreeBSD, also adopted in Mac OS X and iOS, as well as other FreeBSD-descended operat-
ing systems such as Juniper Junos and McAfee Sidewinder [103]. Developed in the DARPA
CHATS program, the MAC Framework allows static and dynamic extension of the kernel’s
access-control model, supporting implementation of security localization – that is, the adapta-
tion of the OS security to product and deployment-specific requirements. The MAC Framework
(although originally targeted at classical mandatory access control models) found significant
use in application sandboxing, especially in Junos, Mac OS X, and iOS. One key lesson from
this work is the importance of longer-term thinking about security-interface design, including
interface stability and support for multiple policy models; these are especially important in
instruction-set design. Another important lesson is the increasing criticality of extensibility of
not just the access-control model, but also the means by which remote principals are identified
and execute within local systems: not only is consideration of classical UNIX users inadequate,
but also there is a need to allow widely varying policies and notions of remote users executing
local code across systems. These lessons are taken to heart in capability systems, which care-
fully separate policy and enforcement, but also support extensible policy through executable
code.
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Capsicum Capsicum is a lightweight OS capability and sandbox framework included in
FreeBSD 9.x and later [104, 101]. Capsicum extends (rather than replaces) UNIX APIs, and
provides new kernel primitives (sandboxed capability mode and capabilities) and a userspace
sandbox API. These tools support compartmentalization of monolithic UNIX applications into
logical applications, an increasingly common goal supported poorly by discretionary and manda-
tory access controls. This approach was demonstrated by adapting core FreeBSD utilities and
Google’s Chromium web browser to use Capsicum primitives; it showed significant simplicity
and robustness benefits to Capsicum over other confinement techniques. Capsicum provides
both inspiration and motivation for CHERI: its hybrid capability-system model is transposed
into the ISA to provide compatibility with current software designs, and its demand for finer-
grained compartmentalization motivates CHERI’s exploration of more scalable approaches.

11.6 A Fresh Opportunity for Capabilities
Despite an extensive research literature exploring the potential of capability-system approaches,
and limited transition to date, we believe that now is the time to revisit these ideas, albeit
through the lens of contemporary problems and with insight gained through decades of re-
search into security and systems design. As described in Chapter 1, a transformed threat en-
vironment deriving from ubiquitous computing and networking, and the practical reality of
widespread exploitation of software vulnerabilities, both provide a strong motivation to inves-
tigate improved processor foundations for software security. This change in environment has
coincided with improved hardware prototyping techniques and higher-level hardware-definition
languages that facilitate academic hardware-software system research at larger scales, without
which we would have been unable to explore the CHERI approach in such detail. Simulta-
neously, our understanding of operating-system and programming-language security has been
vastly enhanced by several decades of research; in particular, recent development of the hy-
brid capability-system Capsicum model suggests a strong alignment between capability-based
techniques and successful mitigation approaches that can be translated into processor design
choices.
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Chapter 12

Conclusion

The CTSRD project, of which CHERI is just one element, has now been in progress for seven
years – an evolution described in detail in Chapter 10. Our focuses to date have been in several
areas:

1. Develop the CHERI protection model and reference CHERI-MIPS Instruction-Set Ar-
chitecture offering low-overhead fine-grained memory protection and supporting scal-
able softare compartmentalization basded on a hybrid capability model. Over several
generations of the ISA, refine integration with a conventional RISC ISA, compose the
capability-system model with the MMU, pursue strong C-language compatibility, de-
velop compartmentalization features based on an object-capability model, refine the ar-
chitecture to improve performance and adoptability through features such as compressed
128-bit capabilities, and develop the notion of a portable protection model that can be
applied to further ISAs (such as RISC-V and x86-64).

2. Employ increasingly complete formal models of the protection model and ISA seman-
tics. We began by using PVS/SAL formal models of the ISA to analyze expressivity and
security. Subsequently, and in close collaboration with the University of Cambridge’s
EPSRC-funded Rigorous Engineering of Mainstream Systems (REMS) Project, we de-
veloped L3 and Sail formal models suitable to act as a gold model for testing, to use in
automated test generation, and as inputs to formal verification tools to prove ISA-level
security properties. We have also used formal modeling to explore how CHERI interacts
with C-language semantics. In the future, we hope to employ these models in support of
hardware and software verification.

3. Elaborate the ISA feature set in CHERI to support a real-world operating system – pri-
marily, this has consisted of adding support for the MIPS system management copro-
cessor, CP0, which includes the MMU and exception model, but also features such as a
programmable interrupt controller (PIC). We have also spent considerable time refining
successive versions of the ISA intended to better support high levels of MMU-based
operating-system and C-language compatibility, as well as automatic use by compil-
ers. This work has incorporated ideas from, but also gone substantially beyond, the
C-language fat-pointer and software compartmentalization research literature.

4. Prototype, test, and refine CHERI-MIPS ISA extensions, which are incorporated via a
new capability coprocessor, CP2. We have open sourced the reference BERI and CHERI
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processor designs, and Qemu ISA-level emulator, in order to allow reproducible experi-
mentation with our approach, as well as to act as an open-source platform for other future
hardware-software research projects.

5. Port the FreeBSD operating system first to a capability-free version of CHERI, known as
BERI. This is known as FreeBSD/BERI, and this support has been upstreamed such that
new releases of FreeBSD support the BERI processor and its peripheral devices.

6. Adapt FreeBSD to make use of CHERI features. Key areas of work included adapting
the kernel and userspace runtime (including system library and runtime linker) to support
tagged memory, capability state, strongly enforced valid pointer provenance, and bound-
s/permissions reduction. This is known as CheriBSD. We developed a hardware-software
in-address-space object-capability model rested on architectural capabilities. We have
also developed a pure-capability system-call ABI and process environment known as
CheriABI, which pushes to an extreme point the use of capabilities to represent all point-
ers (and implied virtual addresses, such as return addresses) in user code generation and
in interaction with a conventional kernel. While open sourced, these changes remain
outside of the upstream FreeBSD repository due to their experimental nature.

7. Adapt the Clang/LLVM compiler suite to be able to generate CHERI ISA instructions
as directed by C-language annotations, exploring a variety of language models, code-
generation models, and ABIs. We have explored two new C-language models and asso-
ciated code generation: a hybrid in which explicitly annotated or automatically inferred
pointers are compiled as capabilities; and a pure-capability model in which all pointers
and implied virtual addresses are compiled as capabilities. Similarly, we have begun
an exploration of how CHERI affects program linkage, with early protype integration
with the compile-time and run-time linkers. These collectively provide strong spatial
and pointer protection for both data and code pointers. We have upstreamed substantial
improvements to Clang/LLVM MIPS support, as well as changes making it easier to sup-
port ISA features such as extra-wide pointers utilized in the CHERI ISA. We have also
begun to explore how CHERI can support higher-level language protection, such as by
using it to reinforce memory safety and security for native code running under the Java
Native Interface (JNI).

8. Begin to develop semi-automated techniques to assist software developers in compart-
mentalizing applications using Capsicum and CHERI features. This is a subproject
known as Security-Oriented Analysis of Application Programs (SOAAP), and performed
in collaboration with Google.

9. Develop FPGA-based demonstration platforms, including an early prototype on the Tera-
sic tPad, and more mature server-style and tablet-style prototypes based on the Terasic
DE4 board. We have also made use of CHERI on the NetFGPA 10G board.

Collectively, these accomplishments have validated our research hypotheses: that a hy-
brid capability-system architecture and viable supporting microarchitecture can support low-
overhead memory protection and fine-grained software compartmentalization while maintain-
ing strong compatibility with current RISC, MMU-based, and C-language software stacks, as
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well as an incremental software adoption path. Further, the resulting protection model, co-
designed around a specific ISA and concrete extensions, is in fact a generalizable and portable
protection model that can be applied to other ISAs; it is suitable for a multitude of imple-
mentations in architecture and microarchitecture. Formal methodology deployed judiciously
throughout the design and implementation process has increased our confidence that the result-
ing design can support robust software designs.

12.1 Future Work
We have made a strong beginning, but clearly there is still much to do in our remaining CTSRD
efforts. Our ongoing key areas of research include:

• Continuing to refine performance with respect to both the architecture (e.g., models for
capability compression) and microarchitecture (e.g., as relates to efficient implementa-
tions of compression and tagged memory).

• Exploring how CHERI’s features might be scaled up (e.g., to superscalar processor de-
signs), down (e.g., to 32-bit microcontrollers without MMUs), and to other compute
types (e.g., DMA engines, GPUs, and so on). Also, looking at how CHERI interacts with
other emerging hardware technologies such as non-volatile memory, where CHERI may
support more rapid, robust, and secure adoption.

• Continuing to elaborate how CHERI should affect the design of operating systems (whether
hybrid systems such as CheriBSD, or clean-slate designs), languages (e.g., C, C++, Java,
and so on), and runtimes (e.g., system libraries, run-time linking, and higher-level lan-
guage runtimes).

• Continuing to explore how CHERI affects software tracing and debugging; for example,
through capability-aware software debuggers.

• Continuing to explore potential models for software compartmentalization, such as clean-
slate microkernel-style message passing grounded in CHERI’s object-capability features,
but not hybrized with conventional OS designs. In addition, continuing to investigate
potential approaches to semi- or fully automated software compartmentalization.

• Continuing our efforts to develop and utilize formal models of the microarchitecture,
architecture, operating system, linkage model, language properties, compilation, and
higher-level applications. This will help us understand (and ensure) the protection bene-
fits of CHERI up and down the hardware-software stack.
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Appendix A

CHERI ISA Version History

This appendix contains a detailed version history of the CHERI Instruction-Set Architecture.
This report was previously made available as the CHERI Architecture Document, but is now
the CHERI Instruction-Set Architecture.

1.0 This first version of the CHERI architecture document was prepared for a six-month deliv-
erable to DARPA. It included a high-level architectural description of CHERI, motiva-
tions for our design choices, and an early version of the capability instruction set.

1.1 The second version was prepared in preparation for a meeting of the CTSRD External
Oversight Group (EOG) in Cambridge during May 2011. The update followed a week-
long meeting in Cambridge, UK, in which many aspects of the CHERI architecture were
formalized, including details of the capability instruction set.

1.2 The third version of the architecture document came as the first annual reports from the
CTSRD project were in preparation, including a decision to break out formal-methods
appendices into their own CHERI Formal Methods Report for the first time. With an
in-progress prototype of the CHERI capability unit, we significantly refined the CHERI
ISA with respect to object capabilities, and matured notions such as a trusted stack and
the role of an operating system supervisor. The formal methods portions of the document
was dramatically expanded, with proofs of correctness for many basic security properties.
Satisfyingly, many ‘future work’ items in earlier versions of the report were becoming
completed work in this version!

1.3 The fourth version of the architecture document was released while the first functional
CHERI prototype was in testing. It reflects on initial experiences adapting a microker-
nel to exploit CHERI capability features. This led to minor architectural refinements,
such as improvements to instruction opcode layout, some additional instructions (such
as allowing CGetPerms retrieve the unsealed bit), and automated generation of opcode
descriptions based on our work in creating a CHERI-enhanced MIPS assembler.

1.4 This version updated and clarified a number of aspects of CHERI following a prototype
implementation used to demonstrate CHERI in November 2011. Changes include up-
dates to the CHERI architecture diagram; replacement of the CDecLen instruction with
CSetLen, addition of a CMove instruction; improved descriptions of exception genera-
tion; clarification of the in-memory representation of capabilities and byte order of per-
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missions; modified instruction encodings for CGetLen, CMove, and CSetLen; specifica-
tion of reset state for capability registers; and clarification of the CIncBase instruction.

1.5 This version of the document was produced almost two years into the CTSRD project. It
documented a significant revision (version 2) to the CHERI ISA, which was motivated
by our efforts to introduce C-language extensions and compiler support for CHERI, with
improvements resulting from operating system-level work and restructuring the BSV
hardware specification to be more amenable to formal analysis. The ISA, programming
language, and operating system sections were significantly updated.

1.6 This version made incremental refinements to version 2 of the CHERI ISA, and also intro-
duced early discussion of the CHERI2 prototype.

1.7 Roughly two and a half years into the project, this version clarified and extended doc-
umentation of CHERI ISA features such as CCall/CReturn and its software emula-
tion, Permit Set Type, the CMove pseudo-op, new load-linked and instructions for store-
conditional relative to capabilities, and several bug fixes such as corrections to sign ex-
tension for several instructions. A new capability-coprocessor cause register, retrieved
using a new CGetCause, was added to allow querying information on the most recent
CP2 exception (e.g., bounds-check vs type-check violations); priorities were provided,
and also clarified with respect to coprocessor exceptions vs. other MIPS ISA exceptions
(e.g., unaligned access). This was the first version of the CHERI Architecture Document
released to early adopters.

1.8 Less than three and a half years into the project, this version refined the CHERI ISA based
on experience with compiler, OS, and userspace development using the CHERI model.
To improve C-language compatibility, new instructions CToPtr and CFromPtr were
defined. The capability permissions mask was extended to add user-defined permissions.
Clarifications were made to the behavior of jump/branch instructions relating to branch-
delay slots and the program counter. CClearTag simply cleared a register’s tag, not its
value. A software-defined capability-cause register range was made available, with a new
CSetCause instruction letting software set the cause for testing or control-flow reasons.
New CCheckPerm and CCheckType instructions were added, letting software object
methods explicitly test for permissions and the types of arguments. TLB permission
bits were added to authorize use of loading and storing tagged values from pages. New
CGetDefault and CSetDefault pseudo-ops have become the preferred way to control
MIPS ISA memory access. CCall/CReturn calling conventions were clarified; CCall
now pushes the incremented version of the program counter, as well as stack pointer, to
the trusted stack.

1.9 - UCAM-CL-TR-850 The document was renamed from the CHERI Architecture Docu-
ment to the CHERI Instruction-Set Architecture. This version of the document was made
available as a University of Cambridge Technical Report. The high-level ISA description
and ISA reference were broken out into separate chapters. A new rationale chapter was
added, along with more detailed explanations throughout about design choices. Notes
were added in a number of places regarding non-MIPS adaptations of CHERI and 128-
bit variants. Potential future directions, such as capability cursors, are discussed in more
detail. Further descriptions of the memory-protection model and its use by operating
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systems and compilers was added. Throughout, content has been updated to reflect more
recent work on compiler and operating-system support for CHERI. Bugs have been fixed
in the specification of the CJR and CJALR instructions. Definitions and behavior for
user-defined permission bits and OS exception handling have been clarified.

1.10 This version of the Instruction-Set Architecture is timed for delivery at the end of the
fourth year of the CTSRD Project. It reflects a significant further revision to the ISA
(version 3) focused on C-language compatibility, better exception-handling semantics,
and reworking of the object-capability mechanism.

The definition of the NULL capability has been revised such that the memory represen-
tation is now all zeroes, and with a zeroed tag. This allows zeroed memory (e.g., ELF
BSS segments) to be interpreted as being filled with NULL capabilities. To this end, the
tag is now defined as unset, and the Unsealed bit has now been inverted to be a Sealed
bit; the CGetUnsealed instruction has been renamed to CGetSealed.

A new offset field has been added to the capability, which converts CHERI from a sim-
ple base/length capability to blending capabilities and fat pointers that associate a base
and bounds with an offset. This approach learns from the extensive fat-pointer research
literature to improve C-language compatibility. The offset can take on any 64-bit value,
and is added to the base on dereference; if the resulting pointer does not fall within the
base and length, then an exception will be thrown. New instructions are added to read
(CGetOffset) and write (CSetOffset) the field, and the semantics of memory access
and other CHERI instructions (e.g., CIncBase) are updated for this new behavior.

A new CPtrCmp instruction has been added, which provides C-friendly comparison of
capabilities; the instruction encoding supports various types of comparisons including
‘equal to’, ‘not equal to’, and both signed and unsigned ‘less than’ and ‘less than or
equal to’ operators.

GetPCC now returns PC as the offset field of the returned PCC rather than storing it to a
general-purpose register. CJR and CJALR now accept target PC values via the offsets of
their jump-target capability arguments rather than via explicit general-purpose registers.
CJALR now allows specification of the return-program-counter capability register in a
manner similar to return-address arguments to the MIPS JALR instruction.

CCall and CReturn are updated to save and restore the saved PC in the offset field of
the saved EPCC rather than separately. EPCC now incorporates the saved exception PC
in its offset field. The behavior of EPCC and expectations about software-supervisor be-
havior are described in greater detail. The security implications of exception cause-code
precedence as relates to alignment and the emulation of unaligned loads and stores are
clarified. The behavior of CSetCause has been clarified to indicate that the instruction
should not raise an exception unless the check for Access EPCC fails. When an excep-
tion is raised due to the state of an argument register for an instruction, it is now defined
which register will be named as the source of the exception in the capability cause regis-
ter.

The object-capability type field is now 24-bit; while a relationship to addresses is main-
tained in order to allow delegation of type allocation, that relationship is deemphasized.
It is assumed that the software type manager will impose any required semantics on
the field, including any necessary uniqueness for the software security model. The
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CSetType instruction has been removed, and a single CSeal instruction replaces the
previous separate CSealCode and CSealData instructions.

The validity of capability fields accessed via the ISA is now defined for untagged capa-
bilities; the undefinedness of the in-memory representation of capabilities is now explicit
in order to permit ‘non-portable’ micro-architectural optimizations.

There is now a structured description of the pseudocode language used in defining in-
structions. Format numbers have now been removed from instruction descriptions.

Ephemeral capabilities are renamed to ‘local capabilities,’ and non-ephemeral capabili-
ties are renamed to ‘global capabilities’; the semantics are unchanged.

1.11 - UCAM-CL-TR-864 This version of the CHERI ISA has been prepared for publication
as a University of Cambridge technical report. It includes a number of refinements to
CHERI ISA version 3 based on further practical implementation experience with both
C-language memory protection and software compartmentalization.

There are a number of updates to the specification reflecting introduction of the offset
field, including discussion of its semantics. A new CIncOffset instruction has been
added, which avoids the need to read the offset into a general-purpose register for fre-
quent arithmetic operations on pointers.

Interactions between EPC and EPCC are now better specified, including that use of
untagged capabilities has undefined behavior. CBTS and CBTU are now defined to use
branch-delay slots, matching other MIPS-ISA branch instructions. CJALR is defined as
suitably incrementing the returned program counter, along with branch-delay slot seman-
tics. Additional software-path pseudocode is present for CCall and CReturn.

CAndPerm and CGetPerm use of argument-register or return-register permission bits
has been clarified. Exception priorities and cause-code register values have been de-
fined, clarified, or corrected for CClearTag, CGetPCC, CSC, and CSeal. Sign or zero
extension for immediates and offsets are now defined CL, CS, and other instructions.

Exceptions caused due to TLB bits controlling loading and storing of capabilities are
now CP2 rather than TLB exceptions, reducing code-path changes for MIPS exception
handlers. These TLB bits now have modified semantics: LC now discards tag bits on the
underlying line rather than throwing an exception; SC will throw an exception only if a
tagged store would result, rather than whenever a write occurs from a capability register.
These affect CLC and CSC.

Pseudocode definitions now appear earlier in the chapter, and have now been extended to
describe EPCC behavior. The ISA reference has been sorted alphabetically by instruc-
tion name.

1.12 This is an interim release as we begin to grapple with 128-bit capabilities. This requires
us to better document architectural assumptions, but also start to propose changes to the
instruction set to reflect differing semantics (e.g., exposing more information to potential
capability compression). A new CSetBounds instruction is proposed, which allows both
the base and length of a capability to be set in a single instruction, which may allow the
micro-architecture to reduce potential loss of precision. Pseudocode is now provided for
both the pure-exception version of the CCall instruction, and also hardware-accelerated
permission checking.
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1.13 This is an interim release as our 128-bit capability format (and general awareness of
imprecision) evolves; this release also makes early infrastructural changes to support an
optional converging of capability and general-purpose register files.

Named constants, rather than specific sizes (e.g., 256-bit vs. 128-bit) are now used
throughout the specification. Reset state for permissions is now relative to available per-
missions. Two variations on 128-bit capabilities are defined, employing two variations
on capability compression. Throughout the specification, the notion of “representable”
is now explicitly defined, and non-representable values must now be handled.

The definitions of CIncOffset, CSetOffset, and CSeal have been modified to reflect
the potential for imprecision. In the event of a loss of precision, the capability base, rather
than offset, will be preserved, allowing the underlying memory object to continue to be
accurately represented.

Saturating behavior is now defined when a compressed capability’s length could repre-
sent a value greater than the maximum value for a 64-bit MIPS integer register.

EPCC behavior is now defined when a jump or branch target might push the offset of
PCC outside of the representable range for EPCC.

CIncBase and CSetLen are deprecated in favor of CSetBounds, which presents changes
to base and bounds to the hardware atomically. The CMove pseudo-operation is now im-
plemented using CIncOffset rather than CIncBase. CFromPtr has been modified to
behave more like CSetOffset: only the offset, not the base, is modified. Bug fixes have
been applied to the definitions of CSetBounds and CUnseal.

Several bugs in the specification of CLC, CLLD, CSC, and CSD, relating to omissions dur-
ing the update to capability offsets, have been fixed. CLC’s description has been updated
to properly reflect its immediate argument.

New instructions CClearHi and CClearLow have been added to accelerate register
clearing during protection-domain switches.

New pseudo-ops CGetEPCC, CSetEPCC, CGetKCC, CSetKCC, CGetKDC, and CSetKDC

have been defined, in the interests of better supporting a migration of ‘special’ regis-
ters out of the capability register file – which facilitates a convergence of capability and
general-purpose register files.

1.14 Two new chapters have been added, one describing the abstract CHERI protection model
in greater detail (and independent from concrete ISA changes), and the second explor-
ing the composition of CHERI’s ISA-level features in supporting higher-level software
protection models.

The value of the NULL capability is now centrally defined (all fields zero; untagged).

ClearLo and ClearHi instructions are now defined for clearing general-purpose reg-
isters, supplementing CClearHi and CClearLo. All four instructions are described
together under CClearReg.

A new CSetBoundsExact instruction is defined, allowing an exception to be thrown if
an attempt to narrow bounds cannot occur precisely. This is intended for use in memory
allocators where it is a software invariant that bounds are always exact. A new exception
code is defined for this case.
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A full range of data widths are now support for capability-relative load-linked, store con-
ditional: CLLB, CLLH, CLLW, CLLD, CSCB, CSCH, CSCW, and CSCD (as well as unsigned
load-linked variations). Previously, only a doubleword variation was defined, but can-
not be used to emulate the narrower widths as fine-grained bounds around a narrow type
would throw a bounds-check exception. Existing load-linked, store-conditional varia-
tions for capabilities (CLLC, CSCC) have been updated, including with respect to opcode
assignments.

A new ‘candidate three’ variation on compressed capabilities has been defined, which
differentiates sealed and unsealed formats. The unsealed variation invests greater num-
bers of bits in bounds accuracy, and has a full 64-bit cursor, but does not contain a broader
set of software-defined permissions or an object-type field. The sealed variation also has
a full 64-bit cursor, but has reduced bounds accuracy in return for a 20-bit object-type
field and a set of software-defined permissions.

‘Candidate two’ of compressed capabilities has been updated to reflect changes in the
hardware prototype by reducing toBase and toBound precision by one bit each.

Explicit equations have been added explaining how bounds are calculated from each of
the 128-bit compressed capability candidates, as well as their alignment requirements.

Exception priorities have been documented (or clarified) for a number of instructions in-
cluding CJALR, CLC, CLLD, CSC, CSCC, CSetLen, CSeal, CUnSeal, and CSetBounds.

The behavior of CPtrCmp is now defined when an undefined comparison type is used.

It is clarified that capability store failures due to TLB-enforced limitations on capability
stores trigger a TLB, rather than a CP2, exception.

A new capability comparison instruction, CEXEQ, checks whether all fields in the capa-
bility are equal; the previous CEQ instruction checked only that their offsets pointed at
the same location.

A new capability instruction, CSUB, allows the implementation of C-language pointer
subtraction semantics with the atomicity properties required for garbage collection.

The list of BERI- and CHERI-related publications, including peer-reviewed conference
publications and technical reports, has been updated.

1.15 - UCAM-CL-TR-876 This version of the CHERI ISA, CHERI ISAv4, has been prepared
for publication as a University of Cambridge technical report.

The instructions CIncBase and CSetLen (deprecated in version 1.13 of the CHERI
ISA) have now been removed in favor of CSetBounds (added in version 1.12 of the
CHERI ISA). The new instruction was introduced in order to atomically expose changes
to both upper and lower bounds of a capability, rather than requiring them to be updated
separately, required to implement compressed capabilities.

The design rationale has been updated to better describe our ongoing exploration of
whether special registers (such as KCC) should be in the capability register file, and the
potential implications of shifting to a userspace exception handler for CCall/CReturn.

1.16 This is an interim update of the instruction-set specification in which aspects of the 128-
bit capability model are clarified and extended.
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The “candidate 3” unsealed 128-bit compressed capability representation has been to in-
crease the exponent field (e) to 6 bits from 4, and the baseBits and topBits fields have
been reduced to 20 bits each from the 22 bits. perms has been increased from 11 to 15 to
allow for a larger set of software-defined permissions. The sealed representation has also
been updated similarly, with a total of 10 bits for otype (split over otypeLow and otype-
High), 10 bits each for baseBits and topBits, and a 6-bit exponent. The algorithm for
decompressing a compressed capability has been changed to better utilize the encoding
space, and to more clearly differentiate representable from in-bounds values. A variety
of improvements and clarifications have been made to the compression model and its
description.

Differences between, and representations of, permissions for 128-bit and 256-bit capa-
bility are now better described.

Capability unrepresentable exceptions will now be thrown in various situations where the
result of a capability manipulation or operation cannot be represented. For manipulations
such as CSeal and CFromPtr, an exception will be thrown. For operations such as CBTU
and CBTS, the exception will be thrown on the first instruction fetch following a branch
to an unrepresentable target, rather than on the branch instruction itself. CHERI1 and
CHERI2 no longer differ on how out-of-bounds exceptions are thrown for capability
branches: it uniformly occurs on fetching the target instruction.

The ISA specification makes it more clear that CEQ, CNE, CL[TE]U, and CEXEQ are forms
of the CPtrCmp instruction.

The ISA todo list has been updated to recommend a capability conditional-move (CCMove)
instruction.

There is now more explicit discussion of the MIPS n64 ABI, Hybrid ABI, and Pure-
Capability ABI. Conventions for capability-register have been updated and clarified – for
example, register assignments for the stack capability, jump register, and link register.
The definition that RCC, the return code capability, is register C24 has been updated to
reflect our use of C17 in actual code generation.

Erroneous references to an undefined instruction CSetBase, introduced during removal
of the CIncBase instruction, have been corrected to refer to CSetBounds.

1.17 This is an interim update of the instruction-set architecture enhancing (and specifying in
more detail) the CHERI-128 “compressed” 128-bit capability format, better aligning the
128-bit and 256-bit models, and adding capability-related instructions required for more
efficient code generation. This is a draft release of what will be considered CHERI ISAv5.

The chapter on ISA design now includes a section describing “deep” versus “surface”
aspects of the CHERI model as mapped into the ISA. For example, use of tagged capa-
bilities is a core aspect of the model, but the particular choice to have a separate capability
register file, rather than extending general-purpose registers to optionally hold capabili-
ties, is a surface design choice in that the operating system and compiler can target the
same software-visible protection model against both. Likewise, although CHERI-128
specifies a concrete compression model, a range of compression approaches are accepted
by the CHERI model.
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A new chapter has been added describing some of our assumptions about how capabil-
ities will be used to build secure systems, for example, that untrusted code will not be
permitted to modify TLB state – which permits changing the interpretation of capabilities
relative to virtual addresses.

The rationale chapter has been updated to more thoroughly describe our capability com-
pression design space.

A new CHERI ISA quick-reference appendix has been added to the specification, docu-
menting both current and proposed instruction encodings.

Sections of the introduction on historical context have been shifted to a stand-alone chap-
ter.

Descriptions in the introduction have been updated relating to our hardware and software
prototypes.

References to PhD dissertations on CHERI have been added to the publications section
of the introduction.

A clarification has been added: the use of the term “capability coprocessor” relates to
CHERI’s utilization of the MIPS ISA coprocessor opcode space, and is not intended to
suggest substantial decoupling of capability-related processing from the processor de-
sign.

Compressed capability “candidate 3” is now CHERI-128. The baseBits, topBits and
cursor fields have been renamed respectively B, T and a (following the terminology
used in the micro paper). When sealed, only the top 8 bits of the B and T fields are
preserved, and the bottom 12 bits are zeroes, which implies stronger alignment require-
ments for sealed capabilities. The exponent e field remains a 6-bit field, but its bottom
2 bits are ignored, as it is believed that coarser granularity is acceptable, and making the
hardware simpler. The otype field benefits from the shorter B and T fields and is now
24 bits which is the same as the otype for 256-bit CHERI. Finally, the representable re-
gion associated with a capability has changed from being centred around the described
object to an asymmetric region with more space above the object than below. The full
description is available in section 4.11.

Alignment requirements for software allocators (such as stack and heap allocators) in the
presence of capability compression are now more concisely described.

The immediate operands to various load and store instructions, including CLC, CSC,
CL[BHWD][U], and CS[BHWD] are now “scaled” by the width of the data being stored
(with the exception of capability stores, where scaling is by 16 bytes regardless of in-
memory capability size). This extends the range of capability-relative loads and stores,
permitting a far greater proportion of stack spills to be expressed without additional stack-
pointer modification. This is a binary-incompatible change to the ISA.

The textual description of the CSeal instruction has been updated to match the pseu-
docode in using >= rather than > in selecting an exception code.

A redundant check has been removed in the definition of the CUnseal instruction, and
an explanation added.

Opcodes have now been specified for the CSetBoundsExact and CSub instructions.
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To improve code generation when constructing a PCC-relative capability as a jump tar-
get, a new CGetPCCSetOffset instruction has been added. This instruction has the
combined effects of performing sequential CGetPCC and CSetOffset operations.

A broader set of opcode rationalizations and cleanups have been applied across the ISA,
to facilitate efficient decoding and future use of the opcode space. This includes changes
to CGetPCC.

C25 is no longer reserved for exception-handler use, as C27 and C28 are already reserved
for this purpose. It is therefore available for ABI use.

The 256-bit architectural capability model has been updated to use a single system per-
mission, Access System Registers, to control access to exception-handling and privi-
leged ISA state, rather than splitting it over multiple permissions. This brings the per-
mission models in 128-bit and 256-bit representations back into full alignment from a
software perspective. This also simplifies permission checking for instructions such
as CClearReg. The permission numbering space has been rationalized as part of this
change. Similarly, the set of exceptions has been updated to reflect a single system
permission. The descriptions of various instructions (such as CClearRegs have been
updated with respect to revised protections for special registers and exception handling.

The descriptions of CCall and CReturn now include an explanation of additional software-
defined behavior such as capability control-flow based on the local/global model.

The common definition of privileged registers (included in the definitions of instructions)
has been updated to explicitly include EPCC.

Future ISA additions are proposed to add testing of branch instructions for NULL and
non-NULL capabilities.

1.18 - UCAM-CL-TR-891 This version of the CHERI ISA, CHERI ISAv5, has been prepared
for publication as a University of Cambridge technical report.

The chapter on the CHERI protection model has been refined and extending, including
adding more information on sealed capabilities, the link between memory allocation and
the setting of bounds and permissions, more detailed coverage of capability flow control,
and interactions with MMU-based models.

A new chapter has been added exploring assumptions that must be made when building
high-assurance software for CHERI.

The detailed ISA version history has shifted from the introduction to a new appendix;
a summary of key versions is maintained in the introduction, along with changes in the
current document version.

A glossary of key terms has been added.

The term “coprocessor” is de-emphasized, as, while it refers correctly to CHERI’s use
of the MIPS opcode extension space, some readers found it suggestive of an indepen-
dent hardware unit rather than tight interation into the processor pipeline and memory
subsystem.

A reference has been added to Robert Norton’s PhD dissertation on optimized CHERI
domain switching.
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A reference has been added to our PLDI 2016 paper on C-language semantics and their
interaction with the CHERI model.

The object-type field in both 128-bit and 256-bit capabilities is now 24 bits, with Top
and Bottom fields reduced to 8 bits for sealed capabilities. This reflects a survey of
current object-oriented software systems, suggesting that 24 bits is a more reasonable
upper bound than 20 bits.

The assembly arguments to CJALR have been swapped for greater consistency with jump-
and-link register instructions in the MIPS ISA.

We have reduced the number of privileged permissions in the 256-bit capability model to
a single privileged permission, Access System Registers, to match 128-bit CHERI. This
is a binary-incompatible change.

We have improved the description of the CHERI-128 model in a number of ways, includ-
ing a new section on the CHERI-128 representable bounds check.

The architecture chapter contains a more detailed discussion of potential ways to reduce
the overhead of CHERI by reducing the number of capability registers, converging the
general-purpose and capability register files, capability compression, and so on.

We have extended our discussion of “deep” vs “shallow” aspects of the CHERI model.

New sections describe potential non-pointer uses of capabilities, as well as possible uses
as primitives supporting higher-level languages.

Instructions that convert from integers to capabilities now share common int_to_cap

pseudocode.

The notes on CBTS have been synchronized to those on CBTU.

Use of language has generally been improved to differentiate the architectural 256-bit
capability model (e.g., in which its fields are 64-bit) from the 128-bit and 256-bit in-
memory representations. This includes consideration of differing representations of ca-
pability permissions in the architectural interface (via instructions) and the microarchi-
tectural implementation.

A number of descriptions of features of, and motivations for, the CHERI design have
been clarified, extended, or otherwise improved.

It is clarified that when combining immediate and register operands with the base and
offset, 64-bit wrap-around is permitted in capability-relative load and store instructions
– rather than throwing an exception. This is required to support sound optimizations in
frequent compiler-generated load/store sequences for C-language programs.

1.19 This release of the CHERI Instruction-Set Architecture (ISA) Specification is an interim
version intended for submission to DARPA/AFRL to meet the requirements of CTSRD
deliverable A015.

The behavior of CToPtr in the event that the pointer of one capability is to the base of
the containing capability has been clarified.

The Access System Registers permission is extended to cover non-CHERI ISA priv-
ileges, such as use of MIPS TLB-management, interrupt-control, exception-handling,
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and cache-control instructions available in the kernel ring. The aim of these in-progress
changes is to allow the compartmentalization of kernel code.

1.20 - UCAM-CL-TR-907 This version of the CHERI ISA, CHERI ISAv6, has been prepared
for publication as University of Cambridge technical report UCAM-CL-TR-907.

Chapter 1 has been substantially reformulated, providing brief introductions to both the
CHERI protection model and CHERI-MIPS ISA, with much remaining content on our
research methodology now shifted to its own new chapter, Chapter 10. Our architec-
tural and application-level least-privilege motivations are now more clearly described, as
well as hybrid aspects of the CHERI approach. Throughout, better distinction is made
between the CHERI protection model and the CHERI-MIPS ISA, which is a specific in-
stantiation of the model with respect to 64-bit MIPS. The research methodology chapter
now provides a discussion of our overall approach, more detailed descriptions of vari-
ous phases of our research and development cycle, and describes major transitions in our
approach as the project proceeded.

Chapter 2 on the software-facing CHERI protection model has been improved to pro-
vide more clear explanations of our approach as well as additional illustrations. The
chapter now more clearly enunciates two guiding principles underlying the CHERI ISA
design: the principle of least privilege, and the principle of intentional use. The former
has been widely considered in the security literature, and motivates privilege reduction
in the CHERI ISA. The latter has not previously described, and is supports the use of
explicitly named rights, rather than implicitly selected ones, wherever possible in order
to avoid ‘confused deputy’ problems. Both contribute to vulnerability mitigation effects.
New sections have been added on revocation and garbage collection. The role and im-
plementation of monotonicity (and also non-monotonicity) in the ISA are more clearly
described.

Chapter 6 has been added, describing how the CHERI protection model might be intro-
duced in the RISC-V and x86-64 ISAs. In doing so, we identify a number of key aspects
of the CHERI model that are required regardless of the underlying ISA. We argue that
the CHERI protection model is a portable model that can be implemented consistently
across a broad range of underlying ISAs and concrete integrations with those ISAs. One
implication of this argument is that portable CHERI-aware software can be implemented
across underlying architectural implementations.

Chapter 4 now describes, at a high level, CHERI’s expectations for tagged memory.

We in general now prefer the phrase “control-flow robustness” to “control-flow integrity”
when talking about capability protection for code pointers, in order to avoid confusion
with conventional CFI.

The descriptions of software-defined aspects of the CCall and CReturn instructions
have been removed from the description and pseudocode of each instruction. They are
instead part of an expanded set of notes on potential software use for these instructions.

A new CCall selector 1 has been added that provides a jump-like domain transition
without use of an architectural exception. In this mode of operation, CCall unseals
the sealed code and data capabilities to enter the new domain, offering a different set
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of hardware and software tradeoffs from the existing selector-0 semantics. For exam-
ple, complex exception-related mechanism is avoided in hardware for domain switches,
with the potential to substantially improve performance. Software would most likely use
this mechanism to branch into a trusted intemediary capability of supporting safe and
controlled switching to a new object.

To support the new CCall selector 1, a new permission, Permit CCall is defined autho-
rizing use of the selector on sealed capabilities. The permission must be present on both
sealed code and data capabilities.

To support the new CCall selector 1, a new CP2 exception cause code, Permit CCall
Violation is defined to report a lack of the Permit CCall permission on sealed code or
data capabilities passed to CCall.

New experimental instructions CBuildCap (import a capability), CCopyType (import
the otype field of a capability), and CCSeal (conditionally seal a capability) have been
added to the ISA to be used when re-internalizing capabilities that have been written to
non-capability-aware memory or storage. This instruction is intended to satisfy use cases
such as swapping to disk, migrating processes, migrating virtual machines, and run-time
linking. A suitable authorizing capability is required in order to restore the tag. As these
instructions are considered experimental, they are documented in Appendix C rather than
the main specification.

The CGetType instruction now returns−1 when used on an unsealed capability, in order
to allow it to be more easily used with CCSeal.

Two new conditional-move instructions are added to the CHERI-MIPS ISA: CMOVN (con-
ditionally move capability on non-zero), and CMOVZ (conditionally move capability on
zero). These complement existing conditional-move instructions in the 64-bit MIPS ISA,
allowing more efficient generated code.

The CJR (capability jump register) and CJALR (capability jump and link register) have
been changed to accept non-global capability jump targets.

The CLC (capability load capability) and CLLC (capability load-linked conditional) in-
structions will now strip loaded tags, rather than throwing an exception, if the Per-
mit Load Capability permission is not present.

The CToPtr (capability to pointer) instruction now checks that the source register is not
sealed, and performs comparative range checks of the two source capabilities. More de-
tailed rationale has been provided for the design of the CToPtr instruction in Chapter 8.

The pseudocode for the CCheckType (capability check type) instruction has been cor-
rected to test uperm as well as perm. The pseudocode for CCheckType has been corrected
to test the sealed bit on both source capabilities. An encoding error for CCheckType in
the ISA quick reference has been corrected.

The pseudocode for the CGetPerm (capability get permissions) instruction has been up-
dated to match syntax used in the CGetType and CGetCause instructions.

The pseudocode for the CUnseal (capability unseal) instruction has been corrected to
avoid an aliasing problem when the source and destination register are the same.

268



The description of the CSeal (capability seal) instruction has been clarified to explain
that precision cannot be lost in the case where bounds are no longer precisely repre-
sentable, as an exception will be thrown.

The description of the fast representability check for compressed capabilities has been
improved.

CHERI-related exception handling behavior is now clarified with respect to the MIPS
EXL status bit, with the aim of ensuring consistent behavior. Regardless of bounds set
on KCC, a suitable offset is selected so that the standard MIPS exception vector will be
executed via the exception PCC.

The section on CHERI control in Chapter 4 has been clarified to more specifically iden-
tify 64-bit MIPS privileged instructions, KSU bits, and general operation modified by the
Access System Registers permission. The section now also more specifically described
privileged behaviors not controlled by the permission, such as use of specific exception
vectors. A corresponding rationale section has been added to Chapter 8.

A number of potential future instruction-set improvements relating to capability com-
pression, control flow, and instruction variants with immediates have been added to the
future ISA changes list in Chapter 4.

Opcode-space reservations for the previously removed CIncBase and CSetLen instruc-
tions have also been removed.

C25, which had its hard-coded ISA use removed in CHERI ISAv5, has now been made
a caller-save capability register in the ABI.

Citations to further CHERI research publications have been added.
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Appendix B

CHERI-MIPS ISA Quick Reference

This appendix provides a quick reference for CHERI-MIPS instruction encodings excluding
experimental instructions (see Appendix C).

B.1 Existing Encodings

The following encodings are correct for implementations that exist at the time of this docu-
ment’s publication.

B.1.1 Capability-Inspection Instructions
0 2 3 10 11 15 16 20 21 25 26 31

0x12 0x0 rd cb 0x0 CGetPerm rd, cb

0x12 0x0 rd cb 0x1 CGetType rd, cb

0x12 0x0 rd cb 0x2 CGetBase rd, cb

0x12 0x0 rd cb 0x3 CGetLen rd, cb

0x12 0x0 rd cb 0x5 CGetTag rd, cb

0x12 0x0 rd cb 0x6 CGetSealed rd, cb

0x12 0x0d rd cb 0x2 CGetOffset rd, cb

0x12 0x0 cd 0x0 0x1f 0x3f CGetPCC cd

0x12 0x0 cd rs 0x7 0x3f CGetPCCSetOffset cd, rs

B.1.2 Capability-Modification Instructions
0 5 6 10 11 15 16 20 21 25 26 31

0x12 0x02 cd cs ct CSeal cd, cs, ct

0x12 0x03 cd cs ct CUnseal cd, cs, ct
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0 2 3 5 6 10 11 15 16 20 21 25 26 31

0x12 0x04 cd cb rt 0x0 CAndPerm cd, cb, rt

0x12 0x04 cd cb 0x5 CClearTag cd, cb

0x12 0x0d cd cb rt 0x0 CIncOffset cd, cb, rt

0x12 0x0d cd cb rt 0x1 CSetOffset cd, cb, rt

0x12 0x01 cd cb rt CSetBounds cd, cb, rt

0x12 0x0 cd cb rt 0x9 CSetBoundsExact cd, cb, rt

B.1.3 Pointer-Arithmetic Instructions
0 5 6 10 11 15 16 20 21 25 26 31

0x12 0x0c rd cb ct CToPtr rd, cb, rt

0x12 0x04 cd cb rt 0x7 CFromPtr cd, cb, rt

0x12 0x0 rt cb ct 0xa CSub rt, cb, ct

B.1.4 Pointer-Comparison Instructions
0 2 3 5 6 10 11 15 16 20 21 25 26 31

0x12 0x0e rd cb ct 0 CEQ rd, cb, ct

0x12 0x0e rd cb ct 1 CNE rd, cb, ct

0x12 0x0e rd cb ct 2 CLT rd, cb, ct

0x12 0x0e rd cb ct 3 CLE rd, cb, ct

0x12 0x0e rd cb ct 4 CLTU rd, cb, ct

0x12 0x0e rd cb ct 5 CLEU rd, cb, ct

0x12 0x0e rd cb ct 6 CEXEQ rd, cb, ct

B.1.5 Exception-Handling Instructions
0 2 3 5 6 10 11 15 16 20 21 25 26 31

0x12 0x0 rd 0x0 0x4 CGetCause rd

0x12 0x04 0x0 0x0 rt 0x4 CSetCause rd

B.1.6 Control-Flow Instructions
0 15 16 2520 21 25 26 31

0x12 0x09 cd offset CBTU cd, offset

0x12 0x0a cd offset CBTS cd, offset
0 5 6 10 11 15 16 20 21 25 26 31

0x12 0x08 cb CJR cb
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0x12 0x07 cd cb CJALR cd, cb

0 10 11 15 16 20 21 25 26 31

0x12 0x05 cs cb selector CCall cs, cb[, selector]

0x12 0x06 CReturn

B.1.7 Assertion Instructions
0 2 3 5 6 10 11 15 16 20 21 25 26 31

0x12 0x0b cs rt 0x0 CCheckPerm cs, rt

0x12 0x0b cs cb 0x1 CCheckType cs, cb

B.1.8 Fast Register-Clearing Instructions
0 15 16 20 21 25 26 31

0x12 0xf 0x0 mask ClearLo mask

0x12 0xf 0x1 mask ClearHi mask

0x12 0xf 0x2 mask CClearLo mask

0x12 0xf 0x3 mask CClearHi mask

0x12 0xf 0x4 mask FPClearLo mask

0x12 0xf 0x5 mask FPClearHi mask

B.1.9 Memory-Access Instructions
0 10 11 15 16 20 21 25 26 31

0x3e cs cb rt offset CSC cs, rt, offset(cb)

0x36 cs cb rt offset CLC cd, rt, offset(cb)

0 1 2 3 10 11 15 16 20 21 25 26 31

0x32 rd cb rt offset s t CLx rd, rt, offset(cb)

0x32 rd cb rt offset 1 0 CLB rd, rt, offset(cb)

0x32 rd cb rt offset 1 1 CLH rd, rt, offset(cb)

0x32 rd cb rt offset 1 2 CLW rd, rt, offset(cb)

0x32 rd cb rt offset 0 0 CLBU rd, rt, offset(cb)

0x32 rd cb rt offset 0 1 CLHU rd, rt, offset(cb)

0x32 rd cb rt offset 0 2 CLWU rd, rt, offset(cb)

0x32 rd cb rt offset 0 3 CLD rd, rt, offset(cb)
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0x3a rs cb rt offset 0 t CSx rs, rt, offset(cb)

0x3a rs cb rt offset 0 0 CSB rs, rt, offset(cb)

0x3a rs cb rt offset 0 1 CSH rs, rt, offset(cb)

0x3a rs cb rt offset 0 2 CSW rs, rt, offset(cb)

0x3a rs cb rt offset 0 3 CSD rs, rt, offset(cb)

B.1.10 Atomic Memory-Access Instructions
0 1 2 3 6 10 11 15 16 20 21 25 26 31

0x12 0x10 cd cb 0xf CLLC cd, cb

0x12 0x10 cs cb rd 0x7 CSCC rd, cs, cb

0x12 0x10 rd cb 1 s t CLLx rd, cb

0x12 0x10 rd cb 1 1 0 CLLB rd, cb

0x12 0x10 rd cb 1 1 1 CLLH rd, cb

0x12 0x10 rd cb 1 1 2 CLLW rd, cb

0x12 0x10 rd cb 1 0 0 CLLBU rd, cb

0x12 0x10 rd cb 1 0 1 CLLHU rd, cb

0x12 0x10 rd cb 1 0 2 CLLWU rd, cb

0x12 0x10 rd cb 1 0 3 CLLD rd, cb

0x12 0x10 rs cb rd 0 t CSCx rd, cb

0x12 0x10 rs cb rd 0 0 CSCB rd, cb

0x12 0x10 rs cb rd 0 1 CSCH rd, cb

0x12 0x10 rs cb rd 0 2 CSCW rd, cb

0x12 0x10 rs cb rd 0 3 CSCD rd, cb

B.1.11 Deprecated and Removed Instructions
0 15 16 2520 21 25 26 31

0x32 rd cb rt offset 1 3 CLLD rd, rt, offset(cb)

0x3a rs cb rt offset 1 3 CSCD rs, rt, offset(cb)
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B.2 Proposed New Encodings
The encodings described in this section are part of an ongoing project to rationalize the use of
opcode space by the CHERI-MIPS prototype. These encodings are subject to change, but may
be supported in future implementations. Some of the instructions listed in this section are not
yet fully specified and their behavior is also subject to change.

B.2.1 Capability-Inspection Instructions
0 5 6 10 11 15 16 20 21 25 26 31

0x12 0x0 rd cb 0x0 0x3f CGetPerm rd, cb

0x12 0x0 rd cb 0x1 0x3f CGetType rd, cb

0x12 0x0 rd cb 0x2 0x3f CGetBase rd, cb

0x12 0x0 rd cb 0x3 0x3f CGetLen rd, cb

0x12 0x0 rd cb 0x4 0x3f CGetTag rd, cb

0x12 0x0 rd cb 0x5 0x3f CGetSealed rd, cb

0x12 0x0 rd cb 0x6 0x3f CGetOffset rd, cb

0x12 0x0 cd 0x0 0x1f 0x3f CGetPCC cd

0x12 0x0 cd rs 0x7 0x3f CGetPCCSetOffset cd, rs

B.2.2 Capability-Modification Instructions
0 5 6 10 11 15 16 20 21 25 26 31

0x12 0x0 cd cs ct 0xb CSeal cd, cs, ct

0x12 0x0 cd cb ct 0xc CUnseal cd, cs, ct

0x12 0x0 cd cs rt 0xd CAndPerm cd, cs, rt

0x12 0x0 cd cs rt 0xf CSetOffset cd, cs, rt

0x12 0x0 cd cs rt 0x10 CSetBounds cd, cs, rt

0x12 0x0 cd cs rt 0x9 CSetBoundsExact cd, cs, rt

0x12 0x0 cd cb 0xb 0x3f CClearTag cd, cb

0x12 0x0 cd cb rt 0x11 CIncOffset cd, cb, rt

B.2.3 Pointer-Arithmetic Instructions
0 5 6 10 11 15 16 20 21 25 26 31

0x12 0x0 rd cb cs 0x12 CToPtr rd, cb, cs

0x12 0x0 cd cb rs 0x13 CFromPtr cd, cb, rs
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0x12 0x0 rt cb cs 0xa CSub rt, cb, cs

0x12 0x0 cd cs 0xa 0x3f CMove cd, cs

0x12 0x0 cd cs rs 0x1b CMOVZ cd, cs, rs

0x12 0x0 cd cs rs 0x1c CMOVN cd, cs, rs

B.2.4 Pointer-Comparison Instructions

0x12 0x0 rd cb cs 0x14 CEQ rd, cb, cs

0x12 0x0 rd cb cs 0x15 CNE rd, cb, cs

0x12 0x0 rd cb cs 0x16 CLT rd, cb, cs

0x12 0x0 rd cb cs 0x17 CLE rd, cb, cs

0x12 0x0 rd cb cs 0x18 CLTU rd, cb, cs

0x12 0x0 rd cb cs 0x19 CLEU rd, cb, cs

0x12 0x0 rd cb cs 0x1a CEXEQ rd, cb, cs

B.2.5 Exception-Handling Instructions
0 5 6 10 11 15 16 20 21 25 26 31

0x12 0x0 rd 0x1 0x1f 0x3f CGetCause rd

0x12 0x0 rs 0x2 0x1f 0x3f CSetCause rs

B.2.6 Control-Flow Instructions
0 15 16 2520 21 25 26 31

0x12 0x9 cd offset CBTU cd, offset

0x12 0xa cd offset CBTS cd, offset
0 5 6 10 11 15 16 20 21 25 26 31

0x12 0x0 cb 0x3 0x1f 0x3f CJR cb

0x12 0x0 cd cb 0xc 0x3f CJALR cd, cb

0 10 11 15 16 20 21 25 26 31

0x12 0x05 cs cb selector CCall cs, cb[, selector]

0x12 0x05 0x0 0x0 0x1 CReturn ; pseudo

B.2.7 Assertion Instructions

0x12 0x0 cs rt 0x8 0x3f CCheckPerm cs, rt
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0x12 0x0 cs cb 0x9 0x3f CCheckType cs, cb

B.2.8 Fast Register-Clearing Instructions
0 15 16 20 21 25 26 31

0x12 0xf 0x0 mask ClearLo mask

0x12 0xf 0x1 mask ClearHi mask

0x12 0xf 0x2 mask CClearLo mask

0x12 0xf 0x3 mask CClearHi mask

0x12 0xf 0x4 mask FPClearLo mask

0x12 0xf 0x5 mask FPClearHi mask

B.2.9 Encoding Summary

All three-register-operand CHERI-MIPS instructions use the following encoding:
0 5 6 10 11 15 16 20 21 25 26 31

0x12 0x0 r1 r2 r3 func

000 001 010 011 100 101 110 111
000 CGetPerm* CGetType* CGetBase* CGetLen* CGetCause* CGetTag* CGetSealed* CGetPCC*
001 CSetBounds CSetBoundsExact CSub CSeal CUnseal CAndPerm UNUSED CSetOffset
010 UNUSED CIncOffset CToPtr CFromPtr CEQ CNE CLT CLE
011 CLTU CLEU CEXEQ CCMovN CCMovZ UNUSED UNUSED UNUSED
100 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
101 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
110 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
011 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED Two Op†

* Deprecated encoding for instruction

† This value is used for two-operand instructions.

This frees several minor opcodes free and allows us to allocate 35 more three-operand instruc-
tions immediately, and eight more once the deprecated encodings are removed, without having
to allocate a new minor opcode.
All two-operand instructions are of the following form:

0 5 6 10 11 15 16 20 21 25 26 31

0x12 0x0 r1 r2 func 0x3f

000 001 010 011 100 101 110 111
00 CGetPerm CGetType CGetBase CGetLen CGetTag CGetSealed CGetOffset CGetPCCSetOffset
01 CCheckPerm CCheckType CMove CClearTag CJALR UNUSED UNUSED UNUSED
10 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
11 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED One Op†
† This value is used for two-operand instructions.

This allows us to allocate 21 new two-operand instructions without consuming a minor opcode.
All one-operand instructions are of the following form:
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0 5 6 10 11 15 16 20 21 25 26 31

0x12 0x0 r1 func 0x1f 0x3f

000 001 010 011 100 101 110 111
00 CGetPCC CGetCause CSetCause CJR UNUSED UNUSED UNUSED UNUSED
01 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
10 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
11 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED
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Appendix C

Experimental Instructions

This appendix describes additional experimental instructions that we have proposed for use in
efficiently reconstructing capabilities (e.g., when a program has been paged out to disk and
then paged back in, and the operating system needs to reconstruct the capabilities that were
originally in its address space). Software should store or transit tags separately from the cor-
responding capability-sized, capability-aligned memory via a trustworthy medium. The ISA
requires that tags be restored using a suitable authorizing capability through which it should
have been possible to derive the same resulting tagged capability – that is, without violating
capability monotonicity. A security review of these instructions is still in progress, and so they
should not yet be considered part of the ISA or safe to implement. These instructions serve two
purposes:

1. They allow efficient internalization of capabilities that have been stored or transfered via
media that do not preserve tags. This functionality might be utilized when tags must be
restored by the kernel’s swap or compressed-memory pager, when migrating the memory
of a virtual machine, when restoring a process snapshot, or by an in-address-space run-
time linker.

2. They allow tags to be restored on capabilities in a manner that maintains architectural
abstraction: software restoring tags need not encode the specifics of the in-memory ca-
pability representation, making that software less fragile in the presence of future use of
reserved fields or changed semantics.

Capabilities can also be reconstructed using the current CGetBase, CGetLen, etc., instruc-
tions, examining those fields and then recreating them utilizing the corresponding CSetBounds
instruction, and so on, but with reduced abstraction and substantially less efficiency.

C.1 Details of Individual Instructions
The following instructions are described using the same syntax and approach as those in Chap-
ter 5.
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CBuildCap: Import a Capability
Format

CBuildCap cd, cb, ct
056101115162021252631

0x12 0x0 cd cb ct 0x1d

Description

CBuildCap attempts to interpret the contents of ct as if it were a valid capability (even though
ct.tag is not required to be set and so ct might contain any bit pattern) and extracts its base,
length, offset, perms and uperms fields. If the bounds of ct cannot be extracted because the
bit pattern in ct does not correspond to a permitted value of the capability type (e.g. length is
negative), then an exception is raised.

If the extracted bounds of ct are within the bounds of cb, and the permissions of ct are
within the permissions of cb, then cd is set equal to cb with the base, length, offset, perms and
uperms of ct.

If ct is sealed, this instruction does not copy its s bit into cd, and does not copy its otype into
cd. With compressed capabilities, a different representation is used for the bounds of sealed and
unsealed capabilities. If ct is sealed, CBuildCap will change the representation of the bounds
so that their values are preserved.

Because ct.tag is not required to be set, there is no guarantee that the bounds of ct will be
in canonical form. CBuildCap may convert the bounds into canonical form rather than simply
copying their bit representation.

CBuildCap does not copy the fields of ct that are reserved for future use.
CBuildCap can be used to set the tag bit on a capability (e.g., one whose non-tag con-

tents has previously been swapped to disk and than reloaded into memory, or during dynamic
linking as untagged capability values are relocated and tagged after being loaded from a file).
This provides both improved efficiency relative to manual rederivation of the tagged capability
via a series of instructions, and also provides improved architectural abstraction by avoiding
embedding the rederivation sequence in code.

Pseudocode

if register inaccessible(cd) then
raise c2 exception(exceptionAccessSystem, cd)

else if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if register inaccessible(ct) then
raise c2 exception(exceptionAccessSystem, ct)

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if cb.sealed then
raise c2 exception(exceptionSealed, cb)

else if ct.base < cb.base then
raise c2 exception(exceptionLength, cb)
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else if ct.base + ct.length > cb.base + cb.length then
raise c2 exception(exceptionLength, cb)

else if ct.length < 0 then
raise c2 exception(exceptionLength, ct)

else if ct.perms ∩ cb.perms 6= ct.perms then
raise c2 exception(exceptionUserDefined, cb)

else if ct.uperms ∩ cb.uperms 6= ct.uperms then
raise c2 exception(exceptionUserDefined, cb)

else
cd← cb with base← ct.base, length← ct.length, perms← ct.perms,

uperms← ct.uperms, offset← ct.offset, sealed← false
end if

Exceptions

A coprocessor 2 exception is raised if:

• cd, cb or ct is a reserved register and PCC.perms does not grant Permit Access System Registers.

• cb.tag is not set.

• cb.s is set.

• The bounds of ct are outside the bounds of cb.

• The values of base and length found in ct are not within the range permitted for a capa-
bility with its tag bit set.

• ct.perms grants a permission that is not granted by cb.perms.

• ct.uperms grants a permission that is not granted by cb.uperms.

Notes

• This instruction acts both as an optimization, and to provide architectural abstraction in
the face of future change to the capability model. A similar effect, albeit with reduced
abstraction, could be achieved by using CGetBase, CGetLength and CGetPerms to
query ct, and then using CSetBounds and CAndPerms to set the bounds and perms of
cd.

• Despite the description of its intended use above, CBuildCap does not actually require
that ct have an unset tag.

• ct might be a sealed capability that has had its tag bit cleared. In this case (assuming
an exception is not raised for another reason), cd will have its s bit cleared, and the bit
representation of the base and length fields might be changed to take account of the
differing representations for sealed and unsealed capabilities in the 128-bit capability
format.
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• This instruction can’t be used to break security properties of the capability mechanism
(such as monotonicity) because cb must be a valid capability and the instruction cannot
be used to create a capability that grants rights that were not granted by cb.

• As the tag bit on ct does not need to be set, there is no guarantee that the bit pattern in
ct was created by clearing the tag bit on a valid capability. It might be an arbitrary bit
pattern that was created by other means. As a result, there is no guarantee that the bit
pattern in ct corresponds to the encoding of a valid value of the capability type, especially
when capability compression is in use. Fields might have values outside of their defined
range, and invariants such as base ≥ 0, base + length ≤ 264 or length ≥ 0 might not
be true. In addition, fields might not be in a canonical (normalized) form. CBuildCap
checks that the base and length fields are within the permitted range for the type and
satisfy the above invariants, raising a length exception if they are not. If the fields are not
in normalized form, CBuildCap may renormalize them rather than simply copying the
bit pattern from ct into cd.

• The type constraint cd.tag =⇒ cd.base ≥ 0 is guaranteed to be satisfied because
cb.base ≥ 0 and an exception would be raised if ct.base ≤ cb.base.

• The type constraint cd.tag =⇒ cd.base + cd.length ≤ 264 is guaranteed to be satis-
fied because this constraint is true for cb, and an exception would be raised if ct.base+
ct.length > cb.base + cb.length.

• Is the value of cd guaranteed to be representable? If ct was created by clearing the tag
bit on a capability, then its bounds can be represented exactly and there will be no loss of
precision. If ct is sealed, then there is a potential issue that the values of the bounds that
are representable in a sealed capability are not the same as the range of bounds that are
representable in an unsealed capability. We rely on a property of the existing capability
formats that if a value of the bounds is representable in a sealed capability, then it is also
representable in an unsealed capability.

• As CBuildCap is not able to restore the seal on a re-tagged capability, it is intended to be
used alongside CCSeal, which will conditionally seal a capability based on a otype value
extracted with CCopyType. These instructions will normally be used in sequence to (i)
re-tag a capability with CBuildCap, (ii) extract a possible object type from the untagged
value with CCopyType, and (iii) conditionally seal the resulting capability with CCSeal.

• The typical use of CBuildCap assumes that there is a single capability cb whose bounds
include every capability value that is expected to be encountered in ct. (With out of range
values being an error). The following are two examples of situations where this is not
the case, and the sequence of instructions to recreate a capability might need to decide
which capability to use as cb: (a) The operating system has enforced a “write xor exe-
cute” policy, and the program attempting to recreate ct has a capability with Permit Write
permission and a capability with Permit Execute permission, but does not have a capa-
bility with both permissions. (b) The capability in ct might be a capability that authorizes
sealing with the Permit Seal permission, and the program attempting to recreate it has a
capability for a range of memory addresses and a capability for a range of otype values,
but does not have a single capability that includes both ranges.
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CCopyType: Import the otype field of a Capability
Format

CCopyType cd, cb, ct
056101115162021252631

0x12 0x0 cd cb ct 0x1e

Description

CCopyType attempts to interpret the contents of ct as if it were a valid capability (even though
ct.tag is not required to be set, and so might contain any bit pattern), and extracts its s and
otype fields. If ct.s is set, cd is set to cb with its offset field set to ct.otype − cb.base. If ct.s is
clear, cd is set to the NULL capability with its base + offset fields set to −1.

Pseudocode

if register inaccessible(cd) then
raise c2 exception(exceptionAccessSystem, cd)

else if register inaccessible(cb) then
raise c2 exception(exceptionAccessSystem, cb)

else if register inaccessible(ct) then
raise c2 exception(exceptionAccessSystem, ct)

else if not cb.tag then
raise c2 exception(exceptionTag, cb)

else if cb.sealed then
raise c2 exception(exceptionSealed, cb)

else if not ct.sealed then
cd← int to cap(−1)

else if ct.otype < cb.base then
raise c2 exception(exceptionLength, cb)

else if ct.otype ≥ cb.base + cb.length then
raise c2 exception(exceptionLength, cb)

else
cd← cb with offset← ct.otype − cb.base

end if

Exceptions

A coprocessor 2 exception is raised if:

• cd, cb or ct are reserved registers and PCC does not grant Access System Registers per-
mission.

• cb.tag is not set.

• cb.s is set.

• ct.otype is outside the bounds of cb.
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Notes

• The intended use case for this instruction is as part of a routine for resetting the tag bit on
a capability that has had its tag bit cleared (e.g. by being swapped out to disk and then
back into memory).

It is a requirement of this specification that if a capability has its tag bit cleared (either
with CClearTag or by copying it as data), and CCopyType is used to extract the otype
field of the result, then cd.base + cd.offset will be equal to the otype of the original
capability if it was sealed, and cd.offset will be -1 if the original capability was not
sealed.

• Typical usage of this instruction will be to use CBuildCap to extract the bounds and
permissions of a capability, CCopyType to extract the otype, and then use CCSeal to
seal the result of the first step with the correct otype.

• This instruction is an optimization. A similar effect could be achieved by using CGetType
to get ct.otype and then CSetOffset to set cd.offset.

• -1 is not a valid value for the otype field, so the result distinguishes between the case
when ct was sealed and the case when it was not sealed.

• If ct is sealed and an exception is not raised, then the result is guaranteed to be repre-
sentable, because the bounds checks ensure that cd’s cursor is within its bounds.

• If ct.otype is outside of the bounds of ct, this is an error condition (attempting to recon-
struct a capability that cb does not give you permission to create). In order to catch this
error condition near to where the problem occurred, we raise an exception. This also has
the benefit of avoiding the case where changing cb’s offset results in a value that is not
representable, as explained in the previous note.
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CCSeal: Conditionally Seal a Capability
Format

CCSeal cd, cs, ct
056101115162021252631

0x12 0x0 cd cs ct 0x1f

Description

If ct.tag is false or ct.base + ct.offset = −1, cs is copied into cd. Otherwise, capability register
cs is sealed with an otype of ct.base + ct.offset and the result is placed in cd as follows:

• cd.otype is set to ct.base + ct.offset;

• cd.s is set;

• and the other fields of cd are copied from cs.

ct must grant Permit Seal permission, and the new otype of cd must be between ct.base
and ct.base + ct.length − 1.

Pseudocode

if register inaccessible(cd) then
raise c2 exception(exceptionAccessSystem, cd)

else if register inaccessible(cs) then
raise c2 exception(exceptionAccessSystem, cs)

else if register inaccessible(ct) then
raise c2 exception(exceptionAccessSystem, ct)

else if not cs.tag then
raise c2 exception(exceptionTag, cs)

else if not ct.tag then
cd← cs

else if ct.base + ct.offset = −1 then
cd← cs

else if cs.sealed then
raise c2 exception(exceptionSealed, cs)

else if ct.sealed then
raise c2 exception(exceptionSealed, ct)

else if not ct.perms.Permit Seal then
raise c2 exception(exceptionPermitSeal, ct)

else if ct.offset ≥ ct.length then
raise c2 exception(exceptionLength, ct)

else if ct.base + ct.offset > max otype then
raise c2 exception(exceptionLength, ct)

else if not representable(true, cs.base, cs.length, cs.offset) then
raise c2 exception(exceptionInexact, cs)

285



else
cd← cs with sealed← true, otype← ct.base + ct.offset

end if

Exceptions

A coprocessor 2 exception is raised if:

• cd, cs, or ct is one of the reserved registers (KR1C, KR2C, KCC, KDC or EPCC) and
the corresponding bit in PCC.perms is not set.

• cs.tag is not set.

• cs.s is set.

• ct.tag and ct.s is set.

• ct.perms.Permit Seal is not set.

• ct.tag and ct.offset ≥ ct.length

• ct.tag and ct.base + ct.offset > max otype

• The bounds of cb cannot be represented exactly in a sealed capability.

Notes

• If capability compression is in use, the range of possible (base, length, offset) values
might be smaller for sealed capabilities than for unsealed capabilities. This means that
CCSeal can fail with an exception in the case where the bounds are no longer precisely
representable.

• This instruction provides two means of indicating that the capability should not be sealed:
either clearing the tag bit on ct or setting ct’s cursor to −1. A potential problem with
just using a cursor of −1 (rather than clearing the tag bit) to disable sealing is that,
depending on ct’s base and offset, setting ct’s cursor to −1 might have a result that is
not representable. However, the NULL capability has tag clear and can always have its
cursor set to−1. (We implement casts from int to int_cap_t by setting the cursor of
NULL to the value of the integer, and so this can hold a value of −1.) Directly clearing
ct’s tag to indicate that sealing should not be performed will work, because it is always
possible to clear the tag bit. Setting ct’s cursor to −1 with CSetOffset to indicate that
sealing should not be performed will also work, because this will either set the cursor to
−1 or (if the result would not be representable) both clear the tag bit and set the cursor
to −1. The latter method may be preferred in a code sequence that extracts the otype of
a capability with CGetType, getting a value of −1 if the capability is not sealed, setting
the cursor of ct to the result, and then using CCSeal to seal a new capability to the same
otype as the original.
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Glossary

capability A capability contains a virtual address, capability bounds describing a range of
bytes within which the virtual address may be dereferenced, capability permissions con-
trolling the forms of dereference that may be permitted (e.g., load or store), a capability
tag protecting capability validity (integrity and capability provenance, and a sealed bit
indicating whether it is a sealed capability or unsealed capability. If the capability is
sealed, then it also contains a capability object type.

In CHERI, capabilities are used to provide pointers with additional protections in aid
of fine-grained memory protection, control-flow robustness, and other higher-level pro-
tection models such as software compartmentalization. Unlike a fat pointer, capabilities
are subject to capability provenance, ensuring that they are derived from a prior valid
capability only via valid manipulations, and capability monotonicity, which ensures that
manipulation can lead only to non-increasing rights. CHERI capabilities provide strong
compatibility with C-language pointers and Memory Management Unit (MMU)-based
system-software designs, by virtual of its hybrid capability model.

Architecturally, a capability can be viewed as a virtual address, calculated as the sum of
the capability base and capability offset. Dereferencing a capability is done relative to
that virtual address. The implementation may choose to store the pre-computed virtual
address combining the base and offset, to avoid an implied addition on each memory
access, and to similarly store the base and length as pre-computed virtual addresses. This
also facilitates implementing a compressed capability mechanism such as the CHERI-
128 model.

In the ISA, capabilities may be used explicitly via capability-based instructions, an appli-
cation of the principle of intentional use, but also implicitly using legacy load and store
instructions via the default data capability (DDC), and instruction fetch via the program-
counter capability (PCC). A capability is either sealed or unsealed, controlling whether
it has software-defined or instruction-set-defined behavior, and whether or not its fields
are immutable.

Capabilities may be held in a capability register in the capability register file, or stored in
suitably aligned tagged memory.

capability base The lower of the two capability bounds, from which the virtual address of a
capability can be calculated by using the capability offset.

capability bounds Upper and lower bounds, associated with each capability, describing a
range of virtual addresses that may be dereferenced via the capability. Architecturally,
bounds are with respect to the capability base, which provides the lower bound, and capa-
bility length, which provides the upper bound when added to the base. The bounds may
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be empty, connoting no right to dereference at any virtual address. The virtual address of
a capability may float outside of the dereferenceable bounds; with a compressed capabil-
ity, it may not be possible to represent all possible out-of-bounds addresses. Bounds may
be manipulated subject to capability monotonicity using capability-based instructions.

capability length The distance between the lower and upper capability bounds.

capability monotonicity Capability monotonicity is a property of the instruction set that any
requested manipulation of a capability, whether in a capability register or in memory,
either leads to strictly non-increasing rights, clearing of the capability tag, or a hard-
ware exception. Controlled violation of monotonicity can be achieved via the exception
delivery mechanism, which grants rights to additional capability registers, and also by
the CCall instruction, which may deliver an exception or unseal (and jump to) suitably
checked sealed capabilities.

capability object type In addition to fat-pointer metadata such as capability bounds and ca-
pability permissions, a sealed capability also contains an integer object type. The object
type is set during a sealing operation to the virtual address of the sealing capability. Ob-
ject types can be used to link a sealed code capability and a sealed data capability when
used with CCall to implement a software object model.

capability offset The distance between capability base and the virtual address acessed when
the capability is used as a pointer.

capability permissions A bitmask, associated with each capability, describing a set of ISA-
or software-defined operations that may be performed via the capability. ISA-defined
permissions include load data, store data, instrution fetch, load capability, and store
capability. Permissions may be manipulated subject to capability monotonicity using
capability-based instructions.

capability provenance The property that, following manipulation, a capability remains valid
for use only if it is derived from another valid capability using a valid capability op-
eration. Provenance is implemented using a capability tag combined with capability
monotonicity, and will be preserved whether a capability is held in a capability register
or memory, subject to suitable use of capability-based instructions.

capability register A capability register is an architecrural register able to hold a capability in-
cluding its capability tag, virtual address, other fat-pointer metadata such as its capability
bounds and capability permissions, and optional capability object type. Capability reg-
isters are stored in the capability register file. A capability register might be a dedicated
register intended primarily for capability-related operations (e.g., the capability registers
described in the CHERI extensions to the MIPS ISA), or a general-purpose integer regis-
ter that has been extended with capability metadata (such as the program-counter capabil-
ity (PCC)). Capability registers must be used to retain tag bits on capabilities transiting
through memory, as only capability-based instructions enforce capability provenance and
capability monotonicity.

capability register file The capability registers, including general-purpose capability regis-
ters and those that have specific interpretations in the instruction set. The latter include
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the program-counter capability (PCC), the default data capability (DDC), the exception
program-counter capability (EPCC), the kernel code capability (KCC), the kernel data
capability (KDC), and the kernel reserved capabilities. Some general-purpose capabil-
ity registers have well-known conventions for their use in software, including the return
capability and the stack capability.

capability tag A capability tag is a 1-bit integrity tag associated with each capability regis-
ter, and also each capability-sized, capability-aligned location in memory. If the tag is
present, the capability is valid and can be dereferenced via the ISA. If the tag is clear,
then the capability is invalid and cannot be dereferenced via the ISA. Tags are preserved
subject to operations conforming to capability provenance and capability monotonicity
rules – for example, that an attempted modification of capability bounds leads to non-
increasing writes, or that in-memory capabilities are written only via capability stores,
and not data stores. Subject to these constraints, tags will be preserved by capability-
based instructions.

capability validity A capability is valid if its capability tag is set, which permits use of the
capability subject to its capability bounds, capability permissions, and so on. Attempts
to dereference a capability without a tag set will lead to a hardware exception.

capability-based instructions These instructions accept capabilities as operands, allowing ca-
pabilities to be loaded from and stored memory, manipulated subject to capability prove-
nance and capability monotonicity rules, and used for a variety of operations such as
loading and storing data and capabilities, as branch targets, and to retrieve and manipu-
late capability fields – subject to capability permissions.

CCall The CCall instruction is a source of controlled non-monotonicity in the CHERI-MIPS
ISA. It has two modes of operation determined by an opcode selector field: a trapping
mode, similar to a system call, that allows a privileged software exception handler to
perform a domain transition; and a jump-like mode in which sealed operands are unsealed
to provide access to additional rights to allow userspace code to perform operations in a
different domain.

The trapping mode, similar to a system call, is intended to support invoking objects ex-
pressed as a pair of sealed capabilities, representing a code capability and a data capabil-
ity. The exception code generated depends on whether or not the two operand capabilities
have valid capability tags, suitable capability permissions, are both sealed, have match-
ing capability object types, and other requirements associated with joint invocation. The
software exception handler is expected to implement software-defined aspects of the ob-
ject model, including any necessary unsealing of the operand capabilities, storing of any
return information (e.g., via a trusted stack), and handle any exceptions reporting fail-
ures of ISA-implemented checks. To facilitate optimized software implementations, a
separate CCall/CReturn exception vector is used.

The jump-like mode can directly enter any userspace domain described by a pair of
sealed capabilities with the Permit CCall permission set. In particular, it can safely en-
ter userspace domain-transition code described by the sealed code capability while also
unsealing the sealed data capability. As with the trapping mode, the sealed operand capa-
bility registers are checked for suitable properties and correspondence, and the userspace
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domain-transition routine can store any return information, perform further error check-
ing, and so on.

CHERI-128 CHERI-128 is a specific compressed capability format that represents a 64-bit
virtual address with full precision, and capability bounds relative to that address with
reduced precision. This compression model places stronger alignment requirements on
the bounds, as well as introducing the idea of representable capabilities (whose capability
offset falls within, or close to within, the bounds) and unrepresentable capabilities, whose
offset falls too far outside of the bounds to represent. Stronger alignment constraints are
placed on sealed capabilities in order to recover further bits for the capability object type
field, which is not required for unsealed capabilities. The practical impact of this model
is to half the size of a 256-bit capability, at modest cost in memory fragmentation.

CHERI-MIPS An application of the CHERI protection model to the 64-bit MIPS ISA.

CHERI-RISC-V An application of the CHERI protection model to the RISC-V ISA.

CHERI-x86-64 An application of the CHERI protection model to the x86-64 ISA.

code capability A capability whose capability permissions have been configured to permit
instruction fetch (i.e., execute) rights; typically, write permission will not be granted via
an executable capability, in contrast to a data capability. Code capabilities are used to
implement control-flow robustness by constraining the available branch and jump targets.

compressed capability A capability whose capability bounds are compressed with respect to
its virtual address, allowing its in-memory footprint to be reduced – e.g., to 128 bits,
rather than the architectural 256 bits visible to the instruction set when a capability is
loaded into a register file. Certain architecturally valid out-of-bounds virtual addresses
may not be representable with capability compression; operations leading to unrepre-
sentable capabilities will clear the capability tag or throw an exception in order to en-
sure continuing capability monotonicity. CHERI-128 is a specific compressed capability
model that selects a particular point in the tradeoff space around in-memory capability
size, bounds alignment requirements, and representability.

control-flow robustness The use of code capabilities to constrain the set of available branch
and jump targets for executing code, such that the potential for attacker manipulation of
the program-counter capability (PCC) to simulate injection of arbitrary code is severely
constrained; a form of vulnerability mitigation implemented via the principle of last priv-
ilege.

CReturn A trapping instruction, similar to a system call, intended to support returning from
an object invoked via the trapping mode of the CCall instruction. Unlike CCall, in-ISA
checks are not performed, leaving any required functionality to software – for example,
popping an entry off of a trusted stack. To facilitate optimized software implementations,
a separate CCall/CReturn exception vector is used.

data capability A capability whose capability permissions have been configured to permit
data load and store, but not instruction fetch (i.e., execute) rights; in contrast to a code
capability.
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default data capability (DDC) A special capability register constraining legacy non-capability-
based instructions that load and store data without awareness of the capability model.
Any attempts to load and store will be relocated relative to the default data capability’s
capability base and capability offset, and controlled by its capability bounds and capa-
bility permissions. Use of the default data capability violates the principle of intentional
use, but permits compatibility with legacy software. A suitably configured default data
capability will prevent the use of non-capability-based load and store instructions..

dereference Dereferencing a virtual address means that it is the target address for a load, store,
or instruction fetch. A capability may be dereferenced only subject to it being valid –
i.e., that its capability tag is present, but also subject to appropriate capability bounds,
capability permissions, and so on. Dereference may occur as a result of explicit use of
a capability via capability-based instructions, or implicitly as a result of the program-
counter capability (PCC) or default data capability (DDC).

exception program-counter capability (EPCC) A reserved capability register into which the
running program-counter capability (PCC) will be moved into on an exception, and
whose value will be moved back into the program-counter capability on exception re-
turn.

fat pointer A pointer (virtual address) that has been extended with additional metadata such
as capability bounds and capability permissions. In conventional fat-pointer designs,
fat pointers to not have a notion of sealing (i.g., as in sealed capabilities and unsealed
capabilities), nor rules implementing capability provenance and capability monotonicity.

fine-grained memory protection The granular description of available code and data in which
capability bounds and capability permissions are made as small as possible, in order to
limit the potential effects of software bugs and vulnerabilities. This approach applies both
to code capabilities and data capabilities, offering effective vulnerability mitigation via
techniques such as control-flow robustness, as well as supporting higher-level mitigation
techniques such as software compartmentalization. Fine-grained memory protection will
typically be driven by the goal of implementing the principle of last privilege.

hybrid capability model A capability model in which not all interfaces to use or manipulate
capabilities conform to the principle of intentional use, such that legacy software is able
to execute around, or within, capability-constrained environments, as well as other fea-
tures required to improve compatibility with conventional software designs permitting
easier incremental adoption of a capability-system model. In CHERI, composition of
the capability-system model with the conventional Memory Management Unit (MMU),
the support for legacy instructions via the program-counter capability (PCC) and default
data capability (DDC), and strong compatibility with the C-language pointer model, all
constitute hybrid aspects of its design, in comparison to a more pure capability-system
model that might elide those behaviors at a cost to compatibility and adoptability.

invoked data capability (IDC) A capability register reserved by convention to hold the un-
sealed data capability on the callee side of CCall, and to be saved from the caller context
on CCall, to be restored by CReturn. Typically, for the caller side, this will point at a
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frame on the caller stack sufficient to safely restore any caller state. On the callee side,
the invoked data capability will be a data capability describing the objects internal state.

kernel code capability (KCC) A capability register reserved to hold a privileged code capa-
bility for use by the kernel during exception handling. This value will be installed in
the program-counter capability (PCC) on exception entry, with the previous value of the
program-counter capability stored in the exception program-counter capability (EPCC).

kernel data capability (KDC) A capability register reserved to hold a privileged data capa-
bility for use by the kernel during exception handling. Typically, this will refer either
to the data segment for a microkernel intended to field exceptions, or for the full kernel.
Kernels compiled to primarily use legacy instructions might install this in the default data
capability (DDC) for the duration of kernel execution. Use of this register is controlled
by capability permissions on the currently executing program-counter capability (PCC).

kernel reserved capabilities These capabilitys, modeled on the MIPS kernel reserved reg-
isters, are set aside for use by the operating-system kernel in exception handling – in
particular, in allowing userspace registers to be saved so that the kernel context can be
installed. As with the MIPS registers, the userspace ABI is not able to use capability
registers set aside for kernel use; unlike the MIPS registers, the kernel reserved capa-
bilities are available for use in the ISA only with a suitably authorized program-counter
capability (PCC) installed.

legacy instructions Legacy instructions are those that accept virtual addresses, rather than
capabilities, as their operands, requiring use of the default data capability (DDC) for
loads and stores, or that explicitly set the program counter to a virtual address, rather
than doing setting the program-counter capability (PCC). These instructions allow legacy
binaries (those compiled without CHERI awareness) to execute, but only without the
benefits of fine-grained memory protection, granular control-flow robustness, or more
efficient software compartmentalization. While still constrained, these instructions do
not conform to the principle of intentional use.

out of bounds When a capability’s capability offset falls outside of its capability bounds, it is
out of bounds, and cannot be dereferenced. Even if a capability’s offset is in bounds, the
width of a data access may cause a load, store, or instruction fetch to fall out of bounds, or
the further offset introduced via a register index or immediate operand to an instruction.
With 256-bit capabilities, all out-of-bounds pointers are representable capabilities. With
compressed capabilities, if an instruction shifts the offset too far out of bounds, this may
result in an unrepresentable capability, leading to the capability tag being cleared, or an
exception being thrown.

pointer A pointer is a language-level reference to a memory object. In conventional ISAs,
a pointer is typically represented as a virtual address. In CHERI, pointers can be rep-
resented either as a virtual address indirected via the default data capability (DDC) or
program-counter capability (PCC), or as a capability. In the latter cases, its integrity and
capability provenance are protected by the capability tag, and its use is limited by capa-
bility bounds and capability permissions. Capability-based instructions preserve the tag
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as required across both capability registers and tagged memory, and also enforce capa-
bility monotonicity: legitimate operations on the pointer cannot broaden the set of rights
described by the capability.

principle of intentional use A design principle in capability systems in which rights are al-
ways explicitly, rather than implicitly exercised. This arises in the CHERI instruction set
through explicit capability operands to capability-based instructions, which contributes to
the effectiveness of fine-grained memory protection and control-flow robustness. When
applied, the principle limits not just the rights available in the presence of a software
vulnerability, but the extent to which software can be manipulated into using rights in an
unintended (and exploitable) manner.

principle of last privilege A principle of software design in which the set of rights available
to running code is minimized to only those required for it to function, often with the
aim of vulnerability mitigation. In CHERI, this concept applies via fine-grained memory
protection for both data and code, and also higher-level software compartmentalization.

program-counter capability (PCC) An extension of the existing program counter to include
capability metadata such as a capability tag, capability bounds, and capability permis-
sions. The program-counter capability ensures that instruction fetch occurs only subject
to capability protections. When an exception fires, the value of the program-counter capa-
bility will be moved to the exception program-counter capability (EPCC), and the value
of the kernel data capability (KDC) moved into the program-counter capability. On ex-
ception return, the value of the exception program-counter capability will be moved into
the program-counter capability.

representable capability A compressed capability whose capability offset is representable
with respect to its capability bounds; this does not imply that the offset is “within bounds”,
but does require that it be within some broader window around the bounds.

return capability A capability designated as the destination for the return address when using
a capability jump-and-link instruction. A degree of control-flow robustness is provided
due to capability bounds, capability permissions, and the capability tag on the resulting
capability, which limits sites that may be jumped back to using the return capability.

sealed bit A bit in the capability format that indicates whether the capability is a sealed capa-
bility or an unsealed capability. The capability object type of the sealed capability is set
to the virtual address of the sealing capability.

sealed capability A sealed capability is one whose sealed bit is set. A sealed capability’s vir-
tual address, capability bounds, capability permissions, and other fields are immutable
– i.e., cannot be modified using capability-based instructions. Sealed capabilities also
have a capability object type derived from their sealing capabilities’s virtual address.
CHERI’s sealing feature allows capabilities to be used to describe software-defined ob-
jects, permitting implementation of encapsulation. A sealed capability cannot be directly
dereferenced using the instruction set. Unsealing can be performed using a jump-based
CCall instruction, or using the CUnseal instruction combined with a suitable sealing ca-
pability. Sealed capabilities provide the necessary architectural encapsulation support to
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implement fine-grained compartmentalization via both object-oriented and non-object-
centric models.

sealing capability A sealing capability is one with the Permit Seal permission, allowing it
to be used to create sealed capabilities using a capability object type set to the sealing
capability’s virtual address, and subject to its bounds.

software compartmentalization The configuration of code capabilities and data capabilities
available via the capability register file and memory such that software components can
be isolated from one another, enabling vulnerability mitigation via the application of the
principle of last privilege at the application layer. One approach to implementing soft-
ware compartmentalization on CHERI is to use sealed capabilities to represent security
domains, which can be safely invoked using a suitably crafted CCall exception handler,
providing mutual distrust. Another uses the jump-based CCall semantics to jump into
sealed code and data capabilities describing a trusted intermediary and destination pro-
tection domain.

stack capability A capability referring to the current stack, whose capability bounds are suit-
ably configured to allow access only to the remaining stack available to allocate at a given
point in execution.

tagged memory Tagged memory associates a 1-bit capability tag with each capability-aligned,
capability-sized word in memory. Capability-based instructions that load and store ca-
pabilities maintain the tag as the capability transits between memory and the capabil-
ity register file, tracking capability provenance. When data stores (i.e., stores of non-
capabilities), the tag on the memory location will be atomically cleared, ensuring the
integrity of in-memory capabilities.

Trusted Computing Base (TCB) The subset of hardware and software that is critical to the
security of a system; in secure system designs, there is often a goal to minimize the size
of the TCB in order to minimize the opportunity for exploitable software vulnerabilities.

trusted stack Some software-defined object-capability models offer strong call-return seman-
tics – i.e., that if a return is issued by an invoked object, or an uncaught exception is
generated, then the appropriate caller will be returned to – exactly once. This can be
implemented via a trusted stack, maintained by the software Trusted Computing Base
(TCB) via CCall and CReturn exception handlers. A trusted stack for an object-oriented
model will likely maintain at least the caller’s program-counter capability (PCC) and
invoked data capability (IDC) to be restored on return.

unrepresentable capability A compressed capability whose capability offset is sufficiently
outside of its capability bounds that the combined pointer value and bounds cannot be
represented in the compressed format; constructing an unrepresentable capability will
lead to the tag being cleared (and information loss) or an exception, rather than a violation
of capability provenance or capability monotonicity.
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unsealed capability An unsealed capability is one whose sealed bit is unset. Its remaining
capability fields are mutable, subject to capability provenance and capability monotonic-
ity rules. These capabilities have hardware-defined behaviors – i.e., subject to capability
bounds, capability permissions, and so on, can be dereferenced.

virtual address An integer translated by the Memory Management Unit (MMU) into a phys-
ical address for the purposes of load, store, and instruction fetch. Capabilitys embed a
virtual address, represented in the instruction set as the sum of the capability base and ca-
pability offset, as well as capability bounds relative to the address. The integer addresses
passed to legacy load and store instructions that would previously have been interpreted
as virtual addresses are, with CHERI, transformed (and checked) using the default data
capability (DDC). Similarly, the integer addresses passed to legacy branch and jump in-
structions are transformed (and checked) using the program-counter capability (PCC).
This in effect introduces a further relocation of legacy addresses prior to virtual address
translation.

vulnerability mitigation A set of techniques limiting the effectiveness of the attacker to ex-
ploit a software vulnerability, typically achieved through use of the principle of last priv-
ilege to constrain injection of arbitrary code, control of the program-counter capability
(PCC) via control-flow robustness using code capabilities, minimization of data rights
granted via available data capabilities, and higher-level software compartmentalization.
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