
1 Intro

Unless otherwise notated, references are to Abstract and
Concrete Categories: The Joy of Cats, [JHS04]. Notation
follows theirs with some contamination from Awodey’s Cat-
egory Theory [Awo10], Pierce’s Basic Category Theory for
Computer Scientists [Pie91], and Riehl’s Category Theory
in Context [Rie].
Entries within each section are roughly sorted by definition,
alphabetically.
Quantifiers are written perhaps unusually in this docu-
ment, as Qφ, where Q is ∀, ∃,

⋃
, etc. and φ is a list of

variables or an expression whose free variables are quan-
tified over. Constrained quantification may be written as
v1 : τ1, v2 : τ2.φ(v1, v2) to indicate “the pairs of values v1

(∈ τ1) and v2 (∈ τ2) such that φ(v1, v2) holds”. Strings of
quantifiers are represented QφQ

′
φ′ etc. There is not neces-

sarily a dot between quantifiers or between the quantifiers
and quantified formula.

2 Basics

¶1 A category C (§3.1) is a quadruple (O,Hom, id, ◦) with

• A collection of objects O

• For each pair of objects A,B, a (disjoint) collection of
arrows from domain A to codomain B, Hom(A,B)
(also written C(A,B)).

• An associative arrow composition operator ◦.

• Identity arrows (idA) on each object A, unit of ◦

¶2 Categories may be described (Awodey:p21) as

C2
◦ // C1

cod
//

dom
//
C0

i
oo

¶3 A category is (Awodey:p24-25,D1.11-12). . .

• small if C0 and C1 are sets and large otherwise.

• locally small if ∀X,Y ∈C0
HomC(X,Y ) ⊆ C1 is a set.

¶4 A predicate P is essentially unique (§7.3) if it is unique
up to isomorphism:

• If both PA and PB, then A ' B

• If PA and A ' B, then PB.

¶5 B is a subcategory of A if it has subcollections of ob-
jects and morphisms with identical composition and identity
(§4.1.1). B is additionally . . .

• full if it has all morphisms from A between objects in
B. (§4.1.2)

• reflective if each B has an A-reflection. (§4.16.2) ¶26

¶6 A category is. . .

• balanced if all bi are iso (§7.49.2)

• discrete if all morphisms are identities. (§3.26.1)

• thin if ∀A,BHom(A,B) ' {∗}. (§3.26.2)

3 Derived Categories

¶7 The arrow (Awodey:p16,i3) category C→ has arrows
for commutative squares in C. There are two functors
cod,dom : C→ → C.

¶8 The cone category over a given diagram, Cone(D(J)),
has as objects cones[¶57] to that diagram and a morphism
between cones is an arrow φ : C → C ′ s.t. ∀Dj∈D(J)c

′
j ◦ φ =

cj .

¶9 The dual (§3.5;Awodey:p15,i2) category Aop which ex-
changes domains and codomains of arrows in A. Any purely-
categorical statement implies its dual.

¶10 The slice (Awodey:p16,i4) category C/C has objects of
arrows in C with codomain C. Arrows are tops of commu-
tative triangles.

4 Object Properties

¶11 C is a coseparator if ∀f,g:B→Af 6= g ⇒ ∃h:A→C .h◦f 6=
h ◦ g. (§7.17) (Contrast monomorphism[¶28].)

¶12 An object 0 is initial if ∀B∃!fB :0→B>. (§7.1)

¶13 A limit (Awodey:D5.16) of a diagram D(J) is a ter-
minal object in the category Cone(D(J)). Written: ci :
(lim←−j Dj) → Di. A colimit (Awodey:§5.6) is an initial ob-

ject in the category of cocones; ci : Di → (lim−→j
Dj). ¶57

¶14 The pair of (ΠA.X) ∈ C and π : A →
HomC (ΠA.X,X) is the power of A : Set and X : C if
∀B:C,g:A→HomC(B,X)∃(∆a∈A.g(a))∈HomC(B,ΠA.X)∀f∈HomC(B,ΠA.X).f =
∆a∈A.g(a)⇔ λâ∈A.π(â) · f = g. (see [Hin]).

¶15 (A×B, π1, π2) is a product iff (UMP)
∀Z,z1,z2∃!u

uπ1 = z1 ∧ uπ2 = z2
Z

z1

||

z2

##
u

��
A A×Bπ1oo π2 // B

¶16 The product category C×D of two categories C and
D consists of objects which are each an ordered pair of an
object from C and one from D; morphisms are, similarly,
pairs of morphisms from C and D. This sense of × is itself
the trivial bifunctor[¶45].

¶17 (P, p1, p2) is a pullback (Awodey:p80,D5.4) of f, g iff
(UMP)

∀Z,z1,z2.fz1=gz2∃!u
z1 = p1u ∧ z2 = p2u

Z

z2 ��

z1 ''
u
// P

p1

��

p2
// B

g

��
A

f // C
P may be denoted A×C B when f, g are clear.
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¶18 S is a separator if ∀f,g:A→Bf 6= g ⇒ ∃h:S→A.f ◦ h 6=
g ◦ h. (§7.10) (Contrast epimorphism[¶23].) S is a separator
iff Hom(S,−) is faithful. (§7.12)

¶19 A set of objects T is a separating set if ∀f,g:A→Bf 6=
g ⇒ ∃S ∈ T , h : S → A.f ◦ h 6= g ◦ h. (§7.14)

¶20 An object 1 is terminal if ∀A∃!f :A→1>. (§7.4)

¶21 An object that is both initial and terminal is called a
zero. (§7.7) EX: ¶85

5 Arrow Properties

¶22 (Q, q) is a coequalizer (§7.51) of f, g iff (UMP) qf = qg
and

∀Z,z.zf=zg∃!uuq = z Z Q
u
oo B

q
oo

z

gg A
f
oo
goo

Coequalizers are essentially unique (§7.70.1) and epic
(§7.71,§7.75.2). EX: ¶82

¶23 e is an epimorphism (§7.39) (the dual of a monomor-
phism) (equiv: is epic (Awodey:D2.1)) if

∀i,jie = je⇒ i = j A
e // // B

i //

j
// C

If f and g are epis, then so is g ◦ f ; if g ◦ f is epi, then so is
g. (§7.41) EX: ¶81

¶24 (E, e) is an equalizer (§7.51) of f, g iff (UMP) fe = ge
and

∀Z,z.fz=gz∃!ueu = z Z
u //

z
77E

e // A
f //

g
// B

Equalizers are essentially unique (§7.53) and monic
(§7.56,§7.59.2). EX: ¶83

¶25 A mono m is a extremal (§7.61) if e epic and m = f ◦e
implies that e iso.

¶26 Let G : A → B and B ∈ B. A G-structured arrow
with domain B is a pair (f : B → GA,A). (§8.30) It is

• generating if ∀r,s:A→A′Gr ◦ f = Gs ◦ f =⇒ r = s

• extremally generating if it is generating and
∀m:A′→A,m mono,(g,A′)f = Gm ◦ g =⇒ m iso.

• G-universal for B if ∀(f ′,A′)∃!f̌f ′ = Gf̌ ◦ f . That is,

B
f //

f ′ 88GA
Gf̌ // GA′ A

f̌ // A′

When G is a subcategory inclusion, a G-structured universal
arrow is a reflection (§4.16).

¶27 f : A→ B is an isomorphism if ∃!g.f◦g = idB ∧ g◦f =
idA. (§3.8; ! in §3.11). Every isomorphism is both monic
and epic (Awodey:P2.6).

¶28 f is a monomorphism (§7.32) (equiv: is monic
(Awodey:D2.1)) if

∀i,jmi = mj ⇒ i = j C
i //

j
// A // m // B

If f and g are monos, then so is g◦f ; if g◦f is mono, then so
is f . (§7.34) Objects with monomorphisms to X are called
subobjects of X (Awodey:D5.1). EX: ¶81

¶29 A point (Awodey:p32) of C is any c : 1→ C. EX: ¶86

¶30 f is a regular monomorphism (§7.56) if it is an equal-
izer of some pair of morphisms.

¶31 f : A→ B is a retraction if ∃g.f ◦ g = 1B (§7.24) aka
split epi (Awodey:D2.7). If f and g are retractions, then
so is g ◦ f ; if g ◦ f is a retraction, then so is g. (§7.27)

¶32 f : A → B is a section if ∃g.g ◦ f = 1A. (§7.19) aka
split mono (Awodey:D2.7). If f and g are sections, then
so is g ◦ f ; if g ◦ f is a section, then so is f . (§7.21)

¶33 Several morphism properties combine in useful ways:

• mono, epi ⇒ bimorphism (§7.49) EX: ¶84

• section ⇒ regular mono (§7.35, §7.59.1)

• regular mono ⇒ extremal mono (§7.59.2, §7.63)

• retraction ⇒ epi (§7.42)

• mono, retraction ⇔ isomorphism (§7.36)

• section, epi ⇔ isomorphism (§7.43)

6 Exponentials

¶34 (Awodey:p107,D6.1) In a category with binary prod-
ucts, given two objects B and C, their exponential is an
object CB and arrow ε : CB ×B → C s.t.
∀A,f :A×B→C∃!f̃ :A→CB

ε ◦ (f̃ × 1B) = f
CB CB ×B ε // C

A

f̃

OO

A×B

f̃×1B

OO

f

;;

The arrows f and f̃ are “exponential transposes.”

¶35 Exponential transposition is self inverse (Awodey:p108).
This implies

HomC(A×B,C) ' HomC(A,CB)

¶36 The exponential category DC has as objects func-
tors[¶39] from C to D and as morphisms the natural trans-
formations[¶49] between these functors.

¶37 A category is cartesian closed (Awodey:p108,D6.2) if
it has all finite products and exponentials.

7 Functors

¶38 Default notation here: functors F,G : A→ B.
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¶39 A covariant functor (or just functor) F
(§3.17;Awodey:D1.2) assigns to each A-object a B-object
and to each A-morphism a B-morphism s.t. composition
and identites are preserved.

¶40 A contravariant functor F (§3.20.5) is a (covariant)
functor Aop → B.

¶41 A diagram (Awodey:D5.15) is a functor D : J → C
from some indexing category J .

¶42 A endofunctor has A = B. F ◦F may be denoted F 2,
etc. (§3.23; ftn 15)

¶43 Functors compose. (§3.23)

¶44 A functor F : C → D. . .

• preserves limits of type J if
∀D:J→C∀lim←−j DjF (lim←−

j

Dj) ' lim←−
j

F (Dj).

• creates limits of type J if ∀D:J→C and all limits L =
lim←−j FDj (i.e., bundle pj : L→ FDj in C ′), ∃!(p̄j : L̄→
Dj) ∈ C ′ with F (L̄) = L, F (p̄j) = pj , and L̄ = lim←−j Dj .

¶45 A (covariant) bifunctor is a functor from a product
category[¶16] (i.e. A × B → C) such that each partial ap-
plication is also a functor. (See [HHJ12] and bifunctors.tex
for more.) A profunctor is a bifunctor which is contravari-
ant[¶40] in one argument and covariant in the other; i.e.
Aop × B → C. A diagonal profunctor is a profunctor
where both elements of the product are the same category;
i.e. Aop ×A→ C.

¶46 A functor F is (§3.27, §3.33)

• amnestic if f is an identity iff Ff is an identity.

• continuous if it preserves all limits. (Awodey:D5.24)

• an equivalence if it is full, faithful, and isomorphism-
dense.

• an embedding if it is injective on morphisms.

• faithful if ∀A,A′F |A(A,A′) ⊆ B(FA,FA′) is injective.

• full if ∀A,A′F |A(A,A′) surjective.

• isomorphism-dense if ∀B∃A.F (A) ' B.

¶47 All functors preserve (in A implies in B) isomorphisms
(§3.21), sections (§7.22), and retractions (§7.28).

¶48 Some functors reflect (in B implies in A) useful prop-
erties:

• Full, faithful functors reflect sections (§7.23) and retrac-
tions (§7.29).

• Faithful functors reflect monos (§7.37.2) and epis
(§7.44).

7.1 Transformations

¶49 A natural transformation τ : F
·→ G assigns each

A ∈ A to τA : FA → GA s.t. ∀f :A→A′Gf ◦ τA = τA′ ◦ Ff
(§6.1;Awodey:D7.6). That is,

∀A,B,f∈C
Gf ◦ τA = τB ◦ Ff

FA
τA //

Ff

��

GA

Gf

��
FB

τB // GB
More generally, given any functor from a product cate-
gory[¶16], we may say that it is natural in the i-th position
if, for all ways of fixing the other positions, the resulting
partial applications form natural transformations.

¶50 There is special notation for functors (H) applied to nat-

ural transformations and vice-versa (§6.3): Hτ : HF
·→ HG

defined by (Hτ)A = H(τA) and τH : FH
·→ GH defined by

(τH)A = τHA.

¶51 A dinatural transform θ : R
•→ S between diago-

nal profunctors[¶45] R,S : Aop × A → C is a A-object-
indexed collection of arrows θ where ∀f :A→A′∈AS idA fθA ◦
R f idA = S f idA′ ◦ θA′ ◦R idA′ f : RA′A→ SAA′.

7.2 Special Functors

¶52 For every category C and objectD ∈ D there is a unique
constant functor !D which sends every C to D and every
f to 1D.

¶53 The covariant representable functor (Awodey:p44)
at A ∈ C is defined by Hom(A,—) : C → Sets. These
functors are continuous (Awodey:P5.25).

¶54 Representable functors preserve monos. (§7.37.1)

¶55 Pullback defines a functor

h∗ : (A
α→ C) ∈ C/C 7→ (C ′ ×C A

α′

→ C ′) ∈ C/C ′

where α′ is the pullback of α along h. (Awodey:P5.10)

¶56 HomC(—,—) is a diagonal profunctor[¶45] from Cop ×
C→ Set, assuming that C is locally small.

8 Cones and Sources

¶57 A cone (Awodey:D5.15) to a diagram D(J) is a col-
lection of arrows cj : C → Dj s.t. ∀Dα∈D(J)cj = Dα ◦ ci.
(Cones are also natural transformations[¶49] from the con-
stant functor[¶52] to the inclusion functor of the diagram
D. [Mil]) (Cones are sources[¶58] subject to commutation
diagrams implied by the diagram.)

¶58 A source in category A indexed by I is a pair
(A, {fi : A→ Ai}i∈I). This source has domain A and
codomain {Ai}i∈I . (§10.1)

¶59 Given (A, {fi}i∈I) and {(Ai, {gij}j∈Ji)}i∈I all sources,

their composite is (A, {gij ◦ fi}i∈I,j∈Ji). (§10.3)
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¶60 A mono-source (§10.5) is (A, {fi}) s.t.
∀r, s : B → A [∀i∈Ifi ◦ r = fi ◦ s]⇒ r = s.

9 Concrete Categories

¶61 For this section, A is a concrete category over X with
forgetful functor[¶39] U : A → X faithful[¶46], denoted
(A, U). (§5.1.1)

¶62 When A = X, Alg(U) has U -algebras[¶72] as objects
and algebra homomorphisms as morphisms.

¶63 If X is Set, A is a construct. (§5.1.2)

¶64 (UA
f→ UB) ∈ X is an A-morphism if f has an

unique U -preimage in A. (§5.3, §6.22)

¶65 A free object A ∈ A is one with a (U -structured)
universal arrow (u, UA) in B. (§8.22+§8.30) ¶26

10 Adjoints and Adjoint Situations

Be sure to see subsection C.3 for examples.

10.1 Joy Approach

¶66 A functor G : A→ B is adjoint if ∀B∈B there exists a
G-structured universal arrow with domain B. (§18.1) ¶26

¶67 Adjoints compose (§8.5), preserve mono-sources[¶60]
(§8.6), and preserve limits[¶13] (§8.9)

¶68 Given adjoint G with ηB : B → G(AB) the G-structured
universal arrow with domain B, ∃!F such that FB = AB and

η : idB
·→ G◦F is natural; further, there is a unique, natural

ε : F ◦ G ·→ idA with Gε ◦ ηG = idG and εF ◦ Fη = idF .
(§19.1)

¶69 (η, ε) : F a G : A → B is a adjoint situation if the
above relationships hold. (§19.7)

10.2 Awodey Approach

¶70 An adjunction (Awodey:D9.1) of F : C → D and

G : D → C is a natural transformation[¶49] η : IC
·→ (G◦F )

s.t.
∀f :X→GY ∃!f#:FX→Y

f = Gf# ◦ ηX
FX

f#

��

X
f

""

ηX // GFX

Gf#

��
Y GY

Equivalently (Awodey:D9.7), a natural isomorphism
φ : HomD(FC,D) ' HomC(C,GD), ηX = φ(1FX)

10.3 Moving Right Along

¶71 A monad (§20.1) on X is (T : X→ X, η : idX
·→ T, µ :

T 2 ·→ T ) s.t.

∀X T 3X
T (µX) //

µTX��
T 2X

µX��
T 2X

µX // TX

TX
T (ηX)//

idTX ''

T 2X
µX��

TX
ηTXoo

idTXww
TX

A Miscellaneous Terminology

¶72 Given an endofunctor[¶42] F on C, a F -algebra is a pair
of a carrier X ∈ C and interpretation morphism h : FX →
X ∈ C. A algebra homomorphism is a morphism f such
that f : (X,h)→ (X ′, h′) s.t. f ◦ h = h′ ◦ T (f). (§5.37)

¶73 A category is finitely presented (Awodey:p75) if it is
the free category over a finite graph quotiented by a finite
set of equations.

¶74 The local membership relation for generalized el-
ement z : Z → C and subobject M (i.e., with monic
m : M → C), z ∈X M , holds iff ∃f :Z→M .z = mf .

¶75 An ω-complete Partial Order (ωCPO) is a Poset
which has all colimits of type (N,≤). (All countably infinite
ascending chains have a top.) (Awodey:p101,E5.33)

B Miscellaneous Useful Properties

¶76 (Awodey:p84,L5.8) In the commuting diagram

F
f ′
//

h′′

��

E
g′
//

h′

��

D

h
��

A
f // B

g // C

1. If FEBA and EDCB are pullbacks, so is FDCA.

2. If FDCA and EDCB are pullbacks, so is FEBA.

¶77 (Awodey:p84,C5.9) Pullbacks preserve commutative tri-
angles.

¶78 (?) Monic arrows pullback to monic arrows. (In the
above, if g is monic, so is g′.)

¶79 Universal Constructions (or Universal Mapping Prop-
erties, UMP) reduce to limits (Awodey:p91,E5.17-20):

terminals products equalizers pullbacks

x y x
α //

β
// y x

��
y // z

¶80 Objects defined by UCs are unique up to isomorphism.

C Examples To Jog Your Memory

C.1 Set

¶81 Epic[¶23] is surjective, monic[¶28] is injective.
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¶82 Coequalizers[¶22] correspond to equivalence classes
(§7.69.1): Let ∼ be the smallest eq. rel. s.t. ∀a∈Af(a) ∼
g(a); then (Q, q) = (B/ ∼, b 7→ [b]∼) is a coequalizer of f
and g.

¶83 Equalizers[¶24]: (E, e) = ({x | f(x) = g(x)} ⊆ X,⊆).

C.2 Mon

¶84 Bimorphisms[¶33] are not isos: ((N,+, 0) → (Z,+, 0)).
(Pierce:§1.6.3)

¶85 ({∗} , ·, ∗) is a (the) zero[¶21].

¶86 Each monoid M has only one point[¶29], 1→M .

C.3 Adjoint Situations and Monads

Defintitons in section 10.

¶87 Consider (η, ε) : F a G : Mon→ Set. ηX : X → GFX
is insertion of generators: ∀x ∈ XηXx = x. εY : FGY → Y
is the re-introduction of structure; if FGY = ((GY )∗, ·, ε)
and Y = (GY,+, 0) then

εY ε = 0 εY (y · z) = y + z εY (y ∈ GY ) = y

¶88 Further, T = G ◦ F is a monad. Generically, µ...
µX(TTX) = (GεF )X(TTX) = (GεFX)(GFGFX)

= G((εFX)(FGFX)) = GFX
So here µ is the G-image of a function which takes y ∈
FGFX = F (X∗) (that is, a concatenation of symbols from
GFX) and re-imposes structure to obtain εFXy ∈ FX.

D Bootstrapping Category Theory

¶89 Cat is the category which has locally small categories
as objects and functors[¶39] as morphisms. (It is not, itself,
locally small, and so is not an object in itself.) Cat is carte-
sian closed[¶37] (see product category[¶16] and exponential
category[¶36]). Its initial object is the empty category and
its terminal object is the category of a single object and its
identity morphism.
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adjoint situation, ¶69
adjunction, ¶70
algebra homomorphism, ¶72
amnestic, ¶46
arrow, ¶7
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bifunctor, ¶45
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cartesian closed, ¶37
category, ¶1
codomain, ¶1
coequalizer, ¶22
colimit, ¶13
composite, ¶59
concrete category, ¶61
cone, ¶8, ¶57
constant functor, ¶52
construct, ¶63
continuous, ¶46
contravariant functor, ¶40
coseparator, ¶11
covariant functor, ¶39
covariant representable functor, ¶53
creates limits of type J , ¶44

diagonal profunctor, ¶45
diagram, ¶41
dinatural transform, ¶51
discrete, ¶6
domain, ¶1
dual, ¶9

embedding, ¶46
endofunctor, ¶42
epic, ¶23
epimorphism, ¶23
equalizer, ¶24
equivalence, ¶46
essentially unique, ¶4
exponential, ¶34
exponential category, ¶36
extremal, ¶25
extremally generating, ¶26

faithful, ¶46
finitely presented, ¶73
forgetful, ¶61
free object, ¶65
full, ¶5, ¶46
functor, ¶39

generating, ¶26

initial, ¶12
is an A-morphism, ¶64
isomorphism, ¶27

isomorphism-dense, ¶46

large, ¶3
limit, ¶13
local membership relation, ¶74
locally small, ¶3

monad, ¶71
monic, ¶28
mono-source, ¶60
monomorphism, ¶28

natural transformation, ¶49

point, ¶29
power, ¶14
preserve, ¶47
preserves limits of type J , ¶44
product, ¶15
product category, ¶16
profunctor, ¶45
pullback, ¶17

reflect, ¶48
reflection, ¶26
reflective, ¶5
regular monomorphism, ¶30
retraction, ¶31

section, ¶32
separating set, ¶19
separator, ¶18
slice, ¶10
small, ¶3
source, ¶58
split epi, ¶31
split mono, ¶32
subcategory, ¶5
subobjects, ¶28

terminal, ¶20
thin, ¶6

zero, ¶21
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